Enriched Koszul duality for dg categories
Documenta mathematica, Tome 30 (2025) no. 4, pp. 755-786

Voir la notice de l'article provenant de la source EMS Press

It is well known that the category of small dg categories dgCat, though it is monoidal, does not form a monoidal model category. In this paper we construct a monoidal model structure on the category of pointed curved coalgebras ptdCoa∗ over a field k and show that the Quillen equivalence relating it to dgCat is monoidal. We also show that dgCat is a ptdCoa∗-enriched model category. As a consequence, the homotopy category of dgCat is closed monoidal and is equivalent as a closed monoidal category to the homotopy category of ptdCoa∗. In particular, this gives a conceptual construction of a derived internal hom in dgCat which we establish over a general PID. This proves Kontsevich’s characterization of the internal hom in terms of A∞​-functors. As an application we obtain a new description of simplicial mapping spaces in dgCat (over a field) and a calculation of their homotopy groups in terms of Hochschild cohomology groups, reproducing a well-known results of Toën. Comparing our approach to Toën’s, we also obtain a description of the core of Lurie’s dg nerve in terms of the ordinary nerve of a discrete category.
DOI : 10.4171/dm/1002
Classification : 18N40, 18D20, 18M70
Mots-clés : DG categories, coalgebras, monoidal categories, model categories, enriched categories, bar-construction, cobar-construction
@article{10_4171_dm_1002,
     author = {Julian Holstein and Andrey Lazarev},
     title = {Enriched {Koszul} duality for dg categories},
     journal = {Documenta mathematica},
     pages = {755--786},
     publisher = {mathdoc},
     volume = {30},
     number = {4},
     year = {2025},
     doi = {10.4171/dm/1002},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/1002/}
}
TY  - JOUR
AU  - Julian Holstein
AU  - Andrey Lazarev
TI  - Enriched Koszul duality for dg categories
JO  - Documenta mathematica
PY  - 2025
SP  - 755
EP  - 786
VL  - 30
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/1002/
DO  - 10.4171/dm/1002
ID  - 10_4171_dm_1002
ER  - 
%0 Journal Article
%A Julian Holstein
%A Andrey Lazarev
%T Enriched Koszul duality for dg categories
%J Documenta mathematica
%D 2025
%P 755-786
%V 30
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/1002/
%R 10.4171/dm/1002
%F 10_4171_dm_1002
Julian Holstein; Andrey Lazarev. Enriched Koszul duality for dg categories. Documenta mathematica, Tome 30 (2025) no. 4, pp. 755-786. doi: 10.4171/dm/1002

Cité par Sources :