Voir la notice de l'article provenant de la source Numdam
The invariant, defined by Schnetz in [17], is an arithmetic graph invariant created towards a better understanding of Feynman integrals.
This paper looks at some graph families of interest, with a focus on decompleted toroidal grids. Specifically, the invariant for is shown to be zero for all decompleted non-skew toroidal grids. We also calculate for a family of graphs called X-ladders. Finally, we show these methods can be applied to any graph with a recursive structure, for any fixed .
@article{AIHPD_2019__6_2_289_0, author = {Chorney, Wesley and Yeats, Karen}, title = {$c_2$ invariants of recursive families of graphs}, journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D}, pages = {289--311}, volume = {6}, number = {2}, year = {2019}, doi = {10.4171/aihpd/72}, mrnumber = {3950656}, zbl = {1414.05152}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpd/72/} }
TY - JOUR AU - Chorney, Wesley AU - Yeats, Karen TI - $c_2$ invariants of recursive families of graphs JO - Annales de l’Institut Henri Poincaré D PY - 2019 SP - 289 EP - 311 VL - 6 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4171/aihpd/72/ DO - 10.4171/aihpd/72 LA - en ID - AIHPD_2019__6_2_289_0 ER -
Chorney, Wesley; Yeats, Karen. $c_2$ invariants of recursive families of graphs. Annales de l’Institut Henri Poincaré D, Tome 6 (2019) no. 2, pp. 289-311. doi : 10.4171/aihpd/72. http://geodesic.mathdoc.fr/articles/10.4171/aihpd/72/
Cité par Sources :