Voir la notice de l'article provenant de la source Numdam
This is a status report on a companion subject to extremal combinatorics, obtained by replacing extremality properties with emergent structure, ‘phases’. We discuss phases, and phase transitions, in large graphs and large permutations, motivating and using the asymptotic formalisms of graphons for graphs and permutons for permutations. Phase structure is shown to emerge using entropy and large deviation techniques.
@article{AIHPD_2018__5_2_287_0, author = {Radin, Charles}, title = {Phases in large combinatorial systems}, journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D}, pages = {287--308}, volume = {5}, number = {2}, year = {2018}, doi = {10.4171/aihpd/55}, mrnumber = {3813217}, zbl = {1390.05237}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpd/55/} }
Radin, Charles. Phases in large combinatorial systems. Annales de l’Institut Henri Poincaré D, Tome 5 (2018) no. 2, pp. 287-308. doi : 10.4171/aihpd/55. http://geodesic.mathdoc.fr/articles/10.4171/aihpd/55/
Cité par Sources :