Voir la notice de l'article provenant de la source Numdam
Via circle pattern techniques, random planar triangulations (with angle variables) are mapped onto Delaunay triangulations in the complex plane. The uniform measure on triangulations is mapped onto a conformally invariant spatial point process. We show that this measure can be expressed as: (1) a sum over 3-spanning-trees partitions of the edges of the Delaunay triangulations; (2) the volume form of a Kähler metric over the space of Delaunay triangulations, whose prepotential has a simple formulation in term of ideal tessellations of the 3d hyperbolic space ; (3) a discretized version (involving finite difference complex derivative operators ) of Polyakov's conformal Fadeev-Popov determinant in 2d gravity; (4) a combination of Chern classes, thus also establishing a link with topological 2d gravity.
@article{AIHPD_2014__1_2_139_0, author = {David, Fran\c{c}ois and Eynard, Bertrand}, title = {Planar maps, circle patterns and {2D} gravity}, journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D}, pages = {139--183}, volume = {1}, number = {2}, year = {2014}, doi = {10.4171/aihpd/5}, mrnumber = {3229942}, zbl = {1297.52007}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpd/5/} }
TY - JOUR AU - David, François AU - Eynard, Bertrand TI - Planar maps, circle patterns and 2D gravity JO - Annales de l’Institut Henri Poincaré D PY - 2014 SP - 139 EP - 183 VL - 1 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4171/aihpd/5/ DO - 10.4171/aihpd/5 LA - en ID - AIHPD_2014__1_2_139_0 ER -
David, François; Eynard, Bertrand. Planar maps, circle patterns and 2D gravity. Annales de l’Institut Henri Poincaré D, Tome 1 (2014) no. 2, pp. 139-183. doi : 10.4171/aihpd/5. http://geodesic.mathdoc.fr/articles/10.4171/aihpd/5/
Cité par Sources :