A solution to the combinatorial puzzle of Mayer’s virial expansion
Annales de l’Institut Henri Poincaré D, Tome 2 (2015) no. 3, pp. 229-262
Voir la notice de l'article provenant de la source Numdam
Mayer’s second theorem in the context of a classical gasmodel allows us to write the coe�fficients of the virial expansion of pressure in terms of weighted two-connected graphs. Labelle, Leroux and Ducharme studied the graph weights arising from the one-dimensional hardcore gas model and noticed that the sum of these weights over all two-connected graphs with vertices is . Th�is paper addresses the question of achieving a purely combinatorial proof of this observation and extends the proof of Bernardi for the connected graph case.
Accepté le :
Publié le :
DOI : 10.4171/aihpd/18
Publié le :
DOI : 10.4171/aihpd/18
Classification :
82-XX, 05-XX
Keywords: Virial expansion, cluster expansion, two-connected graph, involution, Tonks gas, hard-core gas
Keywords: Virial expansion, cluster expansion, two-connected graph, involution, Tonks gas, hard-core gas
@article{AIHPD_2015__2_3_229_0,
author = {Tate, Stephen James},
title = {A solution to the combinatorial puzzle of {Mayer{\textquoteright}s} virial expansion},
journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D},
pages = {229--262},
volume = {2},
number = {3},
year = {2015},
doi = {10.4171/aihpd/18},
mrnumber = {3416836},
zbl = {1337.82005},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpd/18/}
}
TY - JOUR AU - Tate, Stephen James TI - A solution to the combinatorial puzzle of Mayer’s virial expansion JO - Annales de l’Institut Henri Poincaré D PY - 2015 SP - 229 EP - 262 VL - 2 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4171/aihpd/18/ DO - 10.4171/aihpd/18 LA - en ID - AIHPD_2015__2_3_229_0 ER -
Tate, Stephen James. A solution to the combinatorial puzzle of Mayer’s virial expansion. Annales de l’Institut Henri Poincaré D, Tome 2 (2015) no. 3, pp. 229-262. doi: 10.4171/aihpd/18
Cité par Sources :