Global well-posedness of a binary–ternary Boltzmann equation
Annales de l'I.H.P. Analyse non linéaire, Tome 39 (2022) no. 2, pp. 327-369

Voir la notice de l'article provenant de la source Numdam

In this paper we show global well-posedness near vacuum for the binary–ternary Boltzmann equation. The binary–ternary Boltzmann equation provides a correction term to the classical Boltzmann equation, taking into account both binary and ternary interactions of particles, and may serve as a more accurate description model for denser gases in non-equilibrium. Well-posedness of the classical Boltzmann equation and, independently, the purely ternary Boltzmann equation follow as special cases. To prove global well-posedness, we use a Kaniel–Shinbrot iteration and related work to approximate the solution of the non-linear equation by monotone sequences of supersolutions and subsolutions. This analysis required establishing new convolution-type estimates to control the contribution of the ternary collisional operator to the model. We show that the ternary operator allows consideration of softer potentials than the one binary operator, and consequently our solution to the ternary correction of the Boltzmann equation preserves all the properties of the binary interactions solution. These results are novel for collisional operators of monoatomic gases with either hard or soft potentials that model both binary and ternary interactions.

Accepté le :
Publié le :
DOI : 10.4171/aihpc/9
Classification : 35Q20, 35Q82, 82C40
Keywords: Global well-posedness, Boltzmann, binary–ternary, Kaniel–Shinbrot
@article{AIHPC_2022__39_2_327_0,
     author = {Ampatzoglou, Ioakeim and Gamba, Irene M. and Pavlovi\'c, Nata\v{s}a and Taskovi\'c, Maja},
     title = {Global well-posedness of a binary{\textendash}ternary {Boltzmann} equation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {327--369},
     volume = {39},
     number = {2},
     year = {2022},
     doi = {10.4171/aihpc/9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpc/9/}
}
TY  - JOUR
AU  - Ampatzoglou, Ioakeim
AU  - Gamba, Irene M.
AU  - Pavlović, Nataša
AU  - Tasković, Maja
TI  - Global well-posedness of a binary–ternary Boltzmann equation
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2022
SP  - 327
EP  - 369
VL  - 39
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4171/aihpc/9/
DO  - 10.4171/aihpc/9
LA  - en
ID  - AIHPC_2022__39_2_327_0
ER  - 
%0 Journal Article
%A Ampatzoglou, Ioakeim
%A Gamba, Irene M.
%A Pavlović, Nataša
%A Tasković, Maja
%T Global well-posedness of a binary–ternary Boltzmann equation
%J Annales de l'I.H.P. Analyse non linéaire
%D 2022
%P 327-369
%V 39
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4171/aihpc/9/
%R 10.4171/aihpc/9
%G en
%F AIHPC_2022__39_2_327_0
Ampatzoglou, Ioakeim; Gamba, Irene M.; Pavlović, Nataša; Tasković, Maja. Global well-posedness of a binary–ternary Boltzmann equation. Annales de l'I.H.P. Analyse non linéaire, Tome 39 (2022) no. 2, pp. 327-369. doi: 10.4171/aihpc/9

Cité par Sources :