Voir la notice de l'article provenant de la source Numdam
We consider an anisotropic model case for a strictly convex domain of dimension with smooth boundary and we describe dispersion for the semiclassical Schrödinger equation with Dirichlet boundary condition. More specifically, we obtain the following fixed time decay rate for the linear semiclassical flow: a loss of occurs with respect to the boundaryless case due to repeated swallowtail-type singularities, and is proven optimal. Corresponding Strichartz estimates allow us to solve the cubic nonlinear Schrödinger equation on such a three-dimensional model convex domain, hence matching known results on generic compact boundaryless manifolds.
@article{AIHPC_2023__40_4_959_0, author = {Ivanovici, Oana}, title = {Dispersive estimates for the {Schr\"odinger} equation in a model convex domain and applications}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {959--1008}, volume = {40}, number = {4}, year = {2023}, doi = {10.4171/aihpc/75}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpc/75/} }
TY - JOUR AU - Ivanovici, Oana TI - Dispersive estimates for the Schrödinger equation in a model convex domain and applications JO - Annales de l'I.H.P. Analyse non linéaire PY - 2023 SP - 959 EP - 1008 VL - 40 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.4171/aihpc/75/ DO - 10.4171/aihpc/75 LA - en ID - AIHPC_2023__40_4_959_0 ER -
%0 Journal Article %A Ivanovici, Oana %T Dispersive estimates for the Schrödinger equation in a model convex domain and applications %J Annales de l'I.H.P. Analyse non linéaire %D 2023 %P 959-1008 %V 40 %N 4 %U http://geodesic.mathdoc.fr/articles/10.4171/aihpc/75/ %R 10.4171/aihpc/75 %G en %F AIHPC_2023__40_4_959_0
Ivanovici, Oana. Dispersive estimates for the Schrödinger equation in a model convex domain and applications. Annales de l'I.H.P. Analyse non linéaire, Tome 40 (2023) no. 4, pp. 959-1008. doi: 10.4171/aihpc/75
Cité par Sources :