Voir la notice de l'article provenant de la source Numdam
We establish that for any non-empty, compact set the - and -symmetric div-quasiconvex hulls and coincide. This settles a conjecture in a recent work of Conti,Müller & Ortiz [Arch. Ration. Mech. Anal. 235 (2020)] in the affirmative. As a key novelty, we construct an -truncation that preserves both symmetry and solenoidality of matrix-valued maps in . For comparison, we moreover give a construction of -free truncations in the regime which, however, does not apply to the case .
@article{AIHPC_2023__40_6_1267_0, author = {Behn, Linus and Gmeineder, Franz and Schiffer, Stefan}, title = {On symmetric div-quasiconvex hulls and divsym-free $L^\infty$-truncations}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1267--1317}, volume = {40}, number = {6}, year = {2023}, doi = {10.4171/aihpc/66}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpc/66/} }
TY - JOUR AU - Behn, Linus AU - Gmeineder, Franz AU - Schiffer, Stefan TI - On symmetric div-quasiconvex hulls and divsym-free $L^\infty$-truncations JO - Annales de l'I.H.P. Analyse non linéaire PY - 2023 SP - 1267 EP - 1317 VL - 40 IS - 6 UR - http://geodesic.mathdoc.fr/articles/10.4171/aihpc/66/ DO - 10.4171/aihpc/66 LA - en ID - AIHPC_2023__40_6_1267_0 ER -
%0 Journal Article %A Behn, Linus %A Gmeineder, Franz %A Schiffer, Stefan %T On symmetric div-quasiconvex hulls and divsym-free $L^\infty$-truncations %J Annales de l'I.H.P. Analyse non linéaire %D 2023 %P 1267-1317 %V 40 %N 6 %U http://geodesic.mathdoc.fr/articles/10.4171/aihpc/66/ %R 10.4171/aihpc/66 %G en %F AIHPC_2023__40_6_1267_0
Behn, Linus; Gmeineder, Franz; Schiffer, Stefan. On symmetric div-quasiconvex hulls and divsym-free $L^\infty$-truncations. Annales de l'I.H.P. Analyse non linéaire, Tome 40 (2023) no. 6, pp. 1267-1317. doi: 10.4171/aihpc/66
Cité par Sources :