Voir la notice de l'article provenant de la source Numdam
This paper is the continuation of a program, initiated in Grenier and Nguyen [SIAM J. Math. Anal. 51 (2019); J. Differential Equations 269 (2020)], to derive pointwise estimates on the Green function of Orr–Sommerfeld equations. In this paper we focus on long wavelength perturbations, more precisely horizontal wave numbers of order , which correspond to the lower boundary of the instability area for monotonic profiles.
@article{AIHPC_2023__40_6_1457_0, author = {Grenier, Emmanuel and Nguyen, Toan T.}, title = {Green function for linearized {Navier{\textendash}Stokes} around a boundary shear layer profile for long wavelengths}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1457--1485}, volume = {40}, number = {6}, year = {2023}, doi = {10.4171/aihpc/64}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpc/64/} }
TY - JOUR AU - Grenier, Emmanuel AU - Nguyen, Toan T. TI - Green function for linearized Navier–Stokes around a boundary shear layer profile for long wavelengths JO - Annales de l'I.H.P. Analyse non linéaire PY - 2023 SP - 1457 EP - 1485 VL - 40 IS - 6 UR - http://geodesic.mathdoc.fr/articles/10.4171/aihpc/64/ DO - 10.4171/aihpc/64 LA - en ID - AIHPC_2023__40_6_1457_0 ER -
%0 Journal Article %A Grenier, Emmanuel %A Nguyen, Toan T. %T Green function for linearized Navier–Stokes around a boundary shear layer profile for long wavelengths %J Annales de l'I.H.P. Analyse non linéaire %D 2023 %P 1457-1485 %V 40 %N 6 %U http://geodesic.mathdoc.fr/articles/10.4171/aihpc/64/ %R 10.4171/aihpc/64 %G en %F AIHPC_2023__40_6_1457_0
Grenier, Emmanuel; Nguyen, Toan T. Green function for linearized Navier–Stokes around a boundary shear layer profile for long wavelengths. Annales de l'I.H.P. Analyse non linéaire, Tome 40 (2023) no. 6, pp. 1457-1485. doi: 10.4171/aihpc/64
Cité par Sources :