Voir la notice de l'article provenant de la source Numdam
In this paper we prove the existence of a family of self-similar solutions for a class of coagulation equations with a constant flux of particles from the origin. These solutions are expected to describe the longtime asymptotics of Smoluchowski’s coagulation equations with a time-independent source of clusters concentrated in small sizes. The self-similar profiles are shown to be smooth, provided the coagulation kernel is also smooth. Moreover, the self-similar profiles are estimated from above and from below by as , where is the homogeneity of the kernel, and are proven to decay at least exponentially as .
@article{AIHPC_2023__40_4_803_0, author = {Ferreira, Marina A. and Franco, Eugenia and Vel\'azquez, Juan J. L.}, title = {On the self-similar behavior of coagulation systems with injection}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {803--861}, volume = {40}, number = {4}, year = {2023}, doi = {10.4171/aihpc/61}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpc/61/} }
TY - JOUR AU - Ferreira, Marina A. AU - Franco, Eugenia AU - Velázquez, Juan J. L. TI - On the self-similar behavior of coagulation systems with injection JO - Annales de l'I.H.P. Analyse non linéaire PY - 2023 SP - 803 EP - 861 VL - 40 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.4171/aihpc/61/ DO - 10.4171/aihpc/61 LA - en ID - AIHPC_2023__40_4_803_0 ER -
%0 Journal Article %A Ferreira, Marina A. %A Franco, Eugenia %A Velázquez, Juan J. L. %T On the self-similar behavior of coagulation systems with injection %J Annales de l'I.H.P. Analyse non linéaire %D 2023 %P 803-861 %V 40 %N 4 %U http://geodesic.mathdoc.fr/articles/10.4171/aihpc/61/ %R 10.4171/aihpc/61 %G en %F AIHPC_2023__40_4_803_0
Ferreira, Marina A.; Franco, Eugenia; Velázquez, Juan J. L. On the self-similar behavior of coagulation systems with injection. Annales de l'I.H.P. Analyse non linéaire, Tome 40 (2023) no. 4, pp. 803-861. doi: 10.4171/aihpc/61
Cité par Sources :