Voir la notice de l'article provenant de la source Numdam
We describe the long-time behavior of small nonsmooth solutions to the nonlinear Klein–Gordon equations on the sphere . More precisely, we prove that the low harmonic energies (also called super-actions) are almost preserved for times of order , where is an arbitrarily large number and is the norm of the initial datum in the energy space . Roughly speaking, it means that, in order to exchange energy, modes have to oscillate at the same frequency. The proof relies on new multilinear estimates on Hamiltonian vector fields to put the system in Birkhoff normal form. They are derived from new probabilistic bounds on products of Laplace eigenfunctions that we obtain using Levy’s concentration inequality.
@article{AIHPC_2023__40_5_1009_0, author = {Bernier, Joackim and Gr\'ebert, Beno{\^\i}t and Rivi\`ere, Gabriel}, title = {Dynamics of nonlinear {Klein{\textendash}Gordon} equations in low regularity on $\mathbb{S}^2$}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1009--1049}, volume = {40}, number = {5}, year = {2023}, doi = {10.4171/aihpc/55}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpc/55/} }
TY - JOUR AU - Bernier, Joackim AU - Grébert, Benoît AU - Rivière, Gabriel TI - Dynamics of nonlinear Klein–Gordon equations in low regularity on $\mathbb{S}^2$ JO - Annales de l'I.H.P. Analyse non linéaire PY - 2023 SP - 1009 EP - 1049 VL - 40 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.4171/aihpc/55/ DO - 10.4171/aihpc/55 LA - en ID - AIHPC_2023__40_5_1009_0 ER -
%0 Journal Article %A Bernier, Joackim %A Grébert, Benoît %A Rivière, Gabriel %T Dynamics of nonlinear Klein–Gordon equations in low regularity on $\mathbb{S}^2$ %J Annales de l'I.H.P. Analyse non linéaire %D 2023 %P 1009-1049 %V 40 %N 5 %U http://geodesic.mathdoc.fr/articles/10.4171/aihpc/55/ %R 10.4171/aihpc/55 %G en %F AIHPC_2023__40_5_1009_0
Bernier, Joackim; Grébert, Benoît; Rivière, Gabriel. Dynamics of nonlinear Klein–Gordon equations in low regularity on $\mathbb{S}^2$. Annales de l'I.H.P. Analyse non linéaire, Tome 40 (2023) no. 5, pp. 1009-1049. doi: 10.4171/aihpc/55
Cité par Sources :