Convergence rate for the incompressible limit of nonlinear diffusion–advection equations
Annales de l'I.H.P. Analyse non linéaire, Tome 40 (2023) no. 3, pp. 511-529

Voir la notice de l'article provenant de la source Numdam

The incompressible limit of nonlinear diffusion equations of porous medium type has attracted a lot of attention in recent years, due to its ability to link the weak formulation of cellpopulation models to free boundary problems of Hele–Shaw type. Although a vast literature is available on this singular limit, little is known on the convergence rate of the solutions. In this work, we compute the convergence rate in a negative Sobolev norm and, upon interpolating with BV-uniform bounds, we deduce a convergence rate in appropriate Lebesgue spaces.

Accepté le :
Publié le :
DOI : 10.4171/aihpc/53
Classification : 35K57, 35K65, 35Q92, 35B45
Keywords: incompressible limit, rate of convergence, Porous medium equation, free boundary, Hele–Shaw problem
@article{AIHPC_2023__40_3_511_0,
     author = {David, Noemi and D\k{e}biec, Tomasz and Perthame, Beno{\^\i}t},
     title = {Convergence rate for the incompressible limit of nonlinear diffusion{\textendash}advection equations},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {511--529},
     volume = {40},
     number = {3},
     year = {2023},
     doi = {10.4171/aihpc/53},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpc/53/}
}
TY  - JOUR
AU  - David, Noemi
AU  - Dębiec, Tomasz
AU  - Perthame, Benoît
TI  - Convergence rate for the incompressible limit of nonlinear diffusion–advection equations
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2023
SP  - 511
EP  - 529
VL  - 40
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4171/aihpc/53/
DO  - 10.4171/aihpc/53
LA  - en
ID  - AIHPC_2023__40_3_511_0
ER  - 
%0 Journal Article
%A David, Noemi
%A Dębiec, Tomasz
%A Perthame, Benoît
%T Convergence rate for the incompressible limit of nonlinear diffusion–advection equations
%J Annales de l'I.H.P. Analyse non linéaire
%D 2023
%P 511-529
%V 40
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4171/aihpc/53/
%R 10.4171/aihpc/53
%G en
%F AIHPC_2023__40_3_511_0
David, Noemi; Dębiec, Tomasz; Perthame, Benoît. Convergence rate for the incompressible limit of nonlinear diffusion–advection equations. Annales de l'I.H.P. Analyse non linéaire, Tome 40 (2023) no. 3, pp. 511-529. doi: 10.4171/aihpc/53

Cité par Sources :