Global existence of weak solutions to the Navier–Stokes–Korteweg equations
Annales de l'I.H.P. Analyse non linéaire, Tome 39 (2022) no. 1, pp. 171-200

Voir la notice de l'article provenant de la source Numdam

In this paper we consider the Navier–Stokes–Korteweg equations for a viscous compressible fluid with capillarity effects in three space dimensions. We prove global existence of finite energy weak solutions for large initial data. Contrary to previous results regarding this system, vacuum regions are considered in the definition of weak solutions and no additional damping terms are considered. The convergence of the approximating solutions is obtained by introducing suitable truncations of the velocity field and the mass density at different scales in the momentum equations and use only the a priori bounds obtained by the energy and the Bresch–Desjardins entropy. Moreover, the approximating solutions enjoy only a limited amount of regularity, and the derivation of the truncations of the velocity and the density is performed by a suitable regularization procedure.

Accepté le :
Publié le :
DOI : 10.4171/aihpc/5
Classification : 35Q35, 76N10
@article{AIHPC_2022__39_1_171_0,
     author = {Antonelli, Paolo and Spirito, Stefano},
     title = {Global existence of weak solutions to the {Navier{\textendash}Stokes{\textendash}Korteweg} equations},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {171--200},
     volume = {39},
     number = {1},
     year = {2022},
     doi = {10.4171/aihpc/5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpc/5/}
}
TY  - JOUR
AU  - Antonelli, Paolo
AU  - Spirito, Stefano
TI  - Global existence of weak solutions to the Navier–Stokes–Korteweg equations
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2022
SP  - 171
EP  - 200
VL  - 39
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4171/aihpc/5/
DO  - 10.4171/aihpc/5
LA  - en
ID  - AIHPC_2022__39_1_171_0
ER  - 
%0 Journal Article
%A Antonelli, Paolo
%A Spirito, Stefano
%T Global existence of weak solutions to the Navier–Stokes–Korteweg equations
%J Annales de l'I.H.P. Analyse non linéaire
%D 2022
%P 171-200
%V 39
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4171/aihpc/5/
%R 10.4171/aihpc/5
%G en
%F AIHPC_2022__39_1_171_0
Antonelli, Paolo; Spirito, Stefano. Global existence of weak solutions to the Navier–Stokes–Korteweg equations. Annales de l'I.H.P. Analyse non linéaire, Tome 39 (2022) no. 1, pp. 171-200. doi: 10.4171/aihpc/5

Cité par Sources :