Voir la notice de l'article provenant de la source Numdam
In this paper, we analyze the pressureless damped Euler–Riesz equations posed in either or . We construct the global-in-time existence and uniqueness of classical solutions for the system around a constant background state.We also establish large-time behaviors of classical solutions showing the solutions towards the equilibrium as time goes to infinity. For the whole space case, we first show an algebraic decay rate of solutions under additional assumptions on the initial data compared to the existence theory. We then refine the argument to have an exponential decay rate of convergence even in the whole space. In the case of the periodic domain, without any further regularity assumptions on the initial data, we provide the exponential convergence of solutions.
@article{AIHPC_2023__40_3_593_0, author = {Choi, Young-Pil and Jung, Jinwook}, title = {The pressureless damped {Euler{\textendash}Riesz} equations}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {593--630}, volume = {40}, number = {3}, year = {2023}, doi = {10.4171/aihpc/48}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpc/48/} }
TY - JOUR AU - Choi, Young-Pil AU - Jung, Jinwook TI - The pressureless damped Euler–Riesz equations JO - Annales de l'I.H.P. Analyse non linéaire PY - 2023 SP - 593 EP - 630 VL - 40 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4171/aihpc/48/ DO - 10.4171/aihpc/48 LA - en ID - AIHPC_2023__40_3_593_0 ER -
Choi, Young-Pil; Jung, Jinwook. The pressureless damped Euler–Riesz equations. Annales de l'I.H.P. Analyse non linéaire, Tome 40 (2023) no. 3, pp. 593-630. doi: 10.4171/aihpc/48
Cité par Sources :