Voir la notice de l'article provenant de la source Numdam
We obtain an asymptotic Hölder estimate for expectations of a quite general class of discrete stochastic processes. Such expectations can also be described as solutions to a dynamic programming principle or as solutions to discretized PDEs. The result, which is also generalized to functions satisfying Pucci-type inequalities for discrete extremal operators, is a counterpart to the Krylov–Safonov regularity result in PDEs. However, the discrete step size ε has some crucial effects compared to the PDE setting. The proof combines analytic and probabilistic arguments.
@article{AIHPC_2023__40_1_215_0, author = {Arroyo, \'Angel and Blanc, Pablo and Parviainen, Mikko}, title = {H\"older regularity for stochastic processes with bounded and measurable increments}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {215--258}, volume = {40}, number = {1}, year = {2023}, doi = {10.4171/aihpc/41}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpc/41/} }
TY - JOUR AU - Arroyo, Ángel AU - Blanc, Pablo AU - Parviainen, Mikko TI - Hölder regularity for stochastic processes with bounded and measurable increments JO - Annales de l'I.H.P. Analyse non linéaire PY - 2023 SP - 215 EP - 258 VL - 40 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4171/aihpc/41/ DO - 10.4171/aihpc/41 LA - en ID - AIHPC_2023__40_1_215_0 ER -
%0 Journal Article %A Arroyo, Ángel %A Blanc, Pablo %A Parviainen, Mikko %T Hölder regularity for stochastic processes with bounded and measurable increments %J Annales de l'I.H.P. Analyse non linéaire %D 2023 %P 215-258 %V 40 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4171/aihpc/41/ %R 10.4171/aihpc/41 %G en %F AIHPC_2023__40_1_215_0
Arroyo, Ángel; Blanc, Pablo; Parviainen, Mikko. Hölder regularity for stochastic processes with bounded and measurable increments. Annales de l'I.H.P. Analyse non linéaire, Tome 40 (2023) no. 1, pp. 215-258. doi: 10.4171/aihpc/41
Cité par Sources :