A fractional Michael–Simon Sobolev inequality on convex hypersurfaces
Annales de l'I.H.P. Analyse non linéaire, Tome 40 (2023) no. 1, pp. 185-214

Voir la notice de l'article provenant de la source Numdam

The classical Michael–Simon and Allard inequality is a Sobolev inequality for functions defined on a submanifold of Euclidean space. It is governed by a universal constant independent of the manifold, thanks to an additional L p term on the right-hand side which is weighted by the mean curvature of the underlying manifold. We prove here a fractional version of this inequality on hypersurfaces of Euclidean space that are boundaries of convex sets. It involves the Gagliardo seminorm of the function, as well as its L p norm weighted by the fractional mean curvature of the hypersurface.

As an application, we establish a new upper bound for the maximal time of existence in the smooth fractional mean curvature flow of a convex set. The bound depends on the perimeter of the initial set instead of on its diameter.

Accepté le :
Publié le :
DOI : 10.4171/aihpc/39
Classification : 26D10, 46E35, 52A20, 53A07
Keywords: Fractional Sobolev inequalities on manifolds, nonlocal mean curvature, fractional mean curvature flow, maximal time of existence, convexity
@article{AIHPC_2023__40_1_185_0,
     author = {Cabr\'e, Xavier and Cozzi, Matteo and Csat\'o, Gyula},
     title = {A fractional {Michael{\textendash}Simon} {Sobolev} inequality on convex hypersurfaces},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {185--214},
     volume = {40},
     number = {1},
     year = {2023},
     doi = {10.4171/aihpc/39},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpc/39/}
}
TY  - JOUR
AU  - Cabré, Xavier
AU  - Cozzi, Matteo
AU  - Csató, Gyula
TI  - A fractional Michael–Simon Sobolev inequality on convex hypersurfaces
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2023
SP  - 185
EP  - 214
VL  - 40
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4171/aihpc/39/
DO  - 10.4171/aihpc/39
LA  - en
ID  - AIHPC_2023__40_1_185_0
ER  - 
%0 Journal Article
%A Cabré, Xavier
%A Cozzi, Matteo
%A Csató, Gyula
%T A fractional Michael–Simon Sobolev inequality on convex hypersurfaces
%J Annales de l'I.H.P. Analyse non linéaire
%D 2023
%P 185-214
%V 40
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4171/aihpc/39/
%R 10.4171/aihpc/39
%G en
%F AIHPC_2023__40_1_185_0
Cabré, Xavier; Cozzi, Matteo; Csató, Gyula. A fractional Michael–Simon Sobolev inequality on convex hypersurfaces. Annales de l'I.H.P. Analyse non linéaire, Tome 40 (2023) no. 1, pp. 185-214. doi: 10.4171/aihpc/39

Cité par Sources :