Voir la notice de l'article provenant de la source Numdam
The classical Michael–Simon and Allard inequality is a Sobolev inequality for functions defined on a submanifold of Euclidean space. It is governed by a universal constant independent of the manifold, thanks to an additional term on the right-hand side which is weighted by the mean curvature of the underlying manifold. We prove here a fractional version of this inequality on hypersurfaces of Euclidean space that are boundaries of convex sets. It involves the Gagliardo seminorm of the function, as well as its norm weighted by the fractional mean curvature of the hypersurface.
As an application, we establish a new upper bound for the maximal time of existence in the smooth fractional mean curvature flow of a convex set. The bound depends on the perimeter of the initial set instead of on its diameter.
@article{AIHPC_2023__40_1_185_0, author = {Cabr\'e, Xavier and Cozzi, Matteo and Csat\'o, Gyula}, title = {A fractional {Michael{\textendash}Simon} {Sobolev} inequality on convex hypersurfaces}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {185--214}, volume = {40}, number = {1}, year = {2023}, doi = {10.4171/aihpc/39}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpc/39/} }
TY - JOUR AU - Cabré, Xavier AU - Cozzi, Matteo AU - Csató, Gyula TI - A fractional Michael–Simon Sobolev inequality on convex hypersurfaces JO - Annales de l'I.H.P. Analyse non linéaire PY - 2023 SP - 185 EP - 214 VL - 40 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4171/aihpc/39/ DO - 10.4171/aihpc/39 LA - en ID - AIHPC_2023__40_1_185_0 ER -
%0 Journal Article %A Cabré, Xavier %A Cozzi, Matteo %A Csató, Gyula %T A fractional Michael–Simon Sobolev inequality on convex hypersurfaces %J Annales de l'I.H.P. Analyse non linéaire %D 2023 %P 185-214 %V 40 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4171/aihpc/39/ %R 10.4171/aihpc/39 %G en %F AIHPC_2023__40_1_185_0
Cabré, Xavier; Cozzi, Matteo; Csató, Gyula. A fractional Michael–Simon Sobolev inequality on convex hypersurfaces. Annales de l'I.H.P. Analyse non linéaire, Tome 40 (2023) no. 1, pp. 185-214. doi: 10.4171/aihpc/39
Cité par Sources :