Voir la notice de l'article provenant de la source Numdam
By a combination of variational and topological techniques in the presence of invariant cones, we detect a new type of positive axially symmetric solutions of the Dirichlet problem for the elliptic equation
in an annulus (). Here is allowed to be supercritical and is an axially symmetric but possibly nonradial function with additional symmetry and monotonicity properties, which are shared by the solution we construct. In the case where equals a positive constant, we detect conditions, only depending on the exponent and on the inner radius of the annulus, that ensure that the solution is nonradial.
@article{AIHPC_2023__40_1_157_0, author = {Boscaggin, Alberto and Colasuonno, Francesca and Noris, Benedetta and Weth, Tobias}, title = {A supercritical elliptic equation in the annulus}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {157--183}, volume = {40}, number = {1}, year = {2023}, doi = {10.4171/aihpc/38}, language = {EN}, url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpc/38/} }
TY - JOUR AU - Boscaggin, Alberto AU - Colasuonno, Francesca AU - Noris, Benedetta AU - Weth, Tobias TI - A supercritical elliptic equation in the annulus JO - Annales de l'I.H.P. Analyse non linéaire PY - 2023 SP - 157 EP - 183 VL - 40 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4171/aihpc/38/ DO - 10.4171/aihpc/38 LA - EN ID - AIHPC_2023__40_1_157_0 ER -
%0 Journal Article %A Boscaggin, Alberto %A Colasuonno, Francesca %A Noris, Benedetta %A Weth, Tobias %T A supercritical elliptic equation in the annulus %J Annales de l'I.H.P. Analyse non linéaire %D 2023 %P 157-183 %V 40 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4171/aihpc/38/ %R 10.4171/aihpc/38 %G EN %F AIHPC_2023__40_1_157_0
Boscaggin, Alberto; Colasuonno, Francesca; Noris, Benedetta; Weth, Tobias. A supercritical elliptic equation in the annulus. Annales de l'I.H.P. Analyse non linéaire, Tome 40 (2023) no. 1, pp. 157-183. doi: 10.4171/aihpc/38
Cité par Sources :