Voir la notice de l'article provenant de la source Numdam
We analyze some parabolic PDEs with different drift terms which are gradient flows in the Wasserstein space and consider the corresponding discrete-in-time JKO scheme. We prove with optimal transport techniques how to control the and norms of the iterated solutions in terms of the previous norms, essentially recovering well-known results obtained on the continuous-in-time equations. Then we pass to higher-order results, and in particular to some specific BV and Sobolev estimates, where the JKO scheme together with the so-called “five gradients inequality” allows us to recover some estimates that can be deduced from the Bakry–Émery theory for diffusion operators, but also to obtain some novel ones, in particular for the Keller–Segel chemotaxis model.
@article{AIHPC_2022__39_6_1485_0, author = {Di Marino, Simone and Santambrogio, Filippo}, title = {JKO estimates in linear and non-linear {Fokker{\textendash}Planck} equations, and {Keller{\textendash}Segel:} $L^p$ and {Sobolev} bounds}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1485--1517}, volume = {39}, number = {6}, year = {2022}, doi = {10.4171/aihpc/36}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpc/36/} }
TY - JOUR AU - Di Marino, Simone AU - Santambrogio, Filippo TI - JKO estimates in linear and non-linear Fokker–Planck equations, and Keller–Segel: $L^p$ and Sobolev bounds JO - Annales de l'I.H.P. Analyse non linéaire PY - 2022 SP - 1485 EP - 1517 VL - 39 IS - 6 UR - http://geodesic.mathdoc.fr/articles/10.4171/aihpc/36/ DO - 10.4171/aihpc/36 LA - en ID - AIHPC_2022__39_6_1485_0 ER -
%0 Journal Article %A Di Marino, Simone %A Santambrogio, Filippo %T JKO estimates in linear and non-linear Fokker–Planck equations, and Keller–Segel: $L^p$ and Sobolev bounds %J Annales de l'I.H.P. Analyse non linéaire %D 2022 %P 1485-1517 %V 39 %N 6 %U http://geodesic.mathdoc.fr/articles/10.4171/aihpc/36/ %R 10.4171/aihpc/36 %G en %F AIHPC_2022__39_6_1485_0
Di Marino, Simone; Santambrogio, Filippo. JKO estimates in linear and non-linear Fokker–Planck equations, and Keller–Segel: $L^p$ and Sobolev bounds. Annales de l'I.H.P. Analyse non linéaire, Tome 39 (2022) no. 6, pp. 1485-1517. doi: 10.4171/aihpc/36
Cité par Sources :