Degenerate stability of some Sobolev inequalities
Annales de l'I.H.P. Analyse non linéaire, Tome 39 (2022) no. 6, pp. 1459-1484

Voir la notice de l'article provenant de la source Numdam

We show that on 𝕊 1 (1/d-2)×𝕊 d-1 (1) the conformally invariant Sobolev inequality holds with a remainder term that is the fourth power of the distance to the optimizers. The fourth power is best possible. This is in contrast to the more usual vanishing to second order and is motivated by work of Engelstein, Neumayer and Spolaor. A similar phenomenon arises for subcritical Sobolev inequalities on 𝕊 d . Our proof proceeds by an iterated Bianchi–Egnell strategy.

Accepté le :
Publié le :
DOI : 10.4171/aihpc/35
Classification : 39B62, 49K40, 35B35
Keywords: remainder term, Sobolev inequality, stability
@article{AIHPC_2022__39_6_1459_0,
     author = {Frank, Rupert L.},
     title = {Degenerate stability of some {Sobolev} inequalities},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1459--1484},
     volume = {39},
     number = {6},
     year = {2022},
     doi = {10.4171/aihpc/35},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpc/35/}
}
TY  - JOUR
AU  - Frank, Rupert L.
TI  - Degenerate stability of some Sobolev inequalities
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2022
SP  - 1459
EP  - 1484
VL  - 39
IS  - 6
UR  - http://geodesic.mathdoc.fr/articles/10.4171/aihpc/35/
DO  - 10.4171/aihpc/35
LA  - en
ID  - AIHPC_2022__39_6_1459_0
ER  - 
%0 Journal Article
%A Frank, Rupert L.
%T Degenerate stability of some Sobolev inequalities
%J Annales de l'I.H.P. Analyse non linéaire
%D 2022
%P 1459-1484
%V 39
%N 6
%U http://geodesic.mathdoc.fr/articles/10.4171/aihpc/35/
%R 10.4171/aihpc/35
%G en
%F AIHPC_2022__39_6_1459_0
Frank, Rupert L. Degenerate stability of some Sobolev inequalities. Annales de l'I.H.P. Analyse non linéaire, Tome 39 (2022) no. 6, pp. 1459-1484. doi: 10.4171/aihpc/35

Cité par Sources :