Voir la notice de l'article provenant de la source Numdam
We show that on the conformally invariant Sobolev inequality holds with a remainder term that is the fourth power of the distance to the optimizers. The fourth power is best possible. This is in contrast to the more usual vanishing to second order and is motivated by work of Engelstein, Neumayer and Spolaor. A similar phenomenon arises for subcritical Sobolev inequalities on . Our proof proceeds by an iterated Bianchi–Egnell strategy.
@article{AIHPC_2022__39_6_1459_0, author = {Frank, Rupert L.}, title = {Degenerate stability of some {Sobolev} inequalities}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1459--1484}, volume = {39}, number = {6}, year = {2022}, doi = {10.4171/aihpc/35}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpc/35/} }
TY - JOUR AU - Frank, Rupert L. TI - Degenerate stability of some Sobolev inequalities JO - Annales de l'I.H.P. Analyse non linéaire PY - 2022 SP - 1459 EP - 1484 VL - 39 IS - 6 UR - http://geodesic.mathdoc.fr/articles/10.4171/aihpc/35/ DO - 10.4171/aihpc/35 LA - en ID - AIHPC_2022__39_6_1459_0 ER -
Frank, Rupert L. Degenerate stability of some Sobolev inequalities. Annales de l'I.H.P. Analyse non linéaire, Tome 39 (2022) no. 6, pp. 1459-1484. doi: 10.4171/aihpc/35
Cité par Sources :