Existence and regularity of weak solutions for a fluid interacting with a non-linear shell in three dimensions
Annales de l'I.H.P. Analyse non linéaire, Tome 39 (2022) no. 6, pp. 1369-1412

Voir la notice de l'article provenant de la source Numdam

We study the unsteady incompressible Navier–Stokes equations in three dimensions interacting with a non-linear flexible shell of Koiter type. This leads to a coupled system of nonlinear PDEs where the moving part of the boundary is an unknown of the problem. The known existence theory for weak solutions is extended to non-linear Koiter shell models. We introduce a priori estimates that reveal higher regularity of the shell displacement beyond energy estimates. These are essential for non-linear Koiter shell models, since such shell models are non-convex (with respect to terms of highest order). The estimates are obtained by introducing new analytical tools that allow dissipative effects of the fluid to be exploited for the (non-dissipative) solid. The regularity result depends on the geometric constitution alone and is independent of the approximation procedure; hence it holds for arbitrary weak solutions. The developed tools are further used to introduce a generalized Aubin–Lions-type compactness result suitable for fluid–structure interactions.

Accepté le :
Publié le :
DOI : 10.4171/aihpc/33
Classification : 76-XX, 76
Keywords: Fluid–structure interaction, weak solutions, regularity, compactness
@article{AIHPC_2022__39_6_1369_0,
     author = {Muha, Boris and Schwarzacher, Sebastian},
     title = {Existence and regularity of weak solutions for a fluid interacting with a non-linear shell in three dimensions},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1369--1412},
     volume = {39},
     number = {6},
     year = {2022},
     doi = {10.4171/aihpc/33},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpc/33/}
}
TY  - JOUR
AU  - Muha, Boris
AU  - Schwarzacher, Sebastian
TI  - Existence and regularity of weak solutions for a fluid interacting with a non-linear shell in three dimensions
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2022
SP  - 1369
EP  - 1412
VL  - 39
IS  - 6
UR  - http://geodesic.mathdoc.fr/articles/10.4171/aihpc/33/
DO  - 10.4171/aihpc/33
LA  - en
ID  - AIHPC_2022__39_6_1369_0
ER  - 
%0 Journal Article
%A Muha, Boris
%A Schwarzacher, Sebastian
%T Existence and regularity of weak solutions for a fluid interacting with a non-linear shell in three dimensions
%J Annales de l'I.H.P. Analyse non linéaire
%D 2022
%P 1369-1412
%V 39
%N 6
%U http://geodesic.mathdoc.fr/articles/10.4171/aihpc/33/
%R 10.4171/aihpc/33
%G en
%F AIHPC_2022__39_6_1369_0
Muha, Boris; Schwarzacher, Sebastian. Existence and regularity of weak solutions for a fluid interacting with a non-linear shell in three dimensions. Annales de l'I.H.P. Analyse non linéaire, Tome 39 (2022) no. 6, pp. 1369-1412. doi: 10.4171/aihpc/33

Cité par Sources :