Voir la notice de l'article provenant de la source Numdam
We consider the three-dimensional Gross–Pitaevskii equation
and construct traveling wave solutions to this equation. These are solutions of the form with a velocity of order for a small parameter . We build two different types of solutions. For the first type, the functions have a zero-set (vortex set) close to a union of helices for and near these helices has degree . For the second type, the functions have a vortex filament of degree near the vertical axis and vortex filaments of degree near helices whose axis is . In both cases the helices are at a distance of order from the axis and are solutions to the Klein–Majda–Damodaran system, supposed to describe the evolution of nearly parallel vortex filaments in ideal fluids. Analogous solutions have been constructed recently by the authors for the stationary Gross–Pitaevskii equation, namely the Ginzburg–Landau equation. To prove the existence of these solutions we use the Lyapunov–Schmidt method and a subtle separation between even and odd Fourier modes of the error of a suitable approximation.
@article{AIHPC_2022__39_6_1319_0, author = {D\'avila, Juan and del Pino, Manuel and Medina, Maria and Rodiac, R\'emy}, title = {Interacting helical traveling waves for the {Gross{\textendash}Pitaevskii} equation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1319--1367}, volume = {39}, number = {6}, year = {2022}, doi = {10.4171/aihpc/32}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpc/32/} }
TY - JOUR AU - Dávila, Juan AU - del Pino, Manuel AU - Medina, Maria AU - Rodiac, Rémy TI - Interacting helical traveling waves for the Gross–Pitaevskii equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2022 SP - 1319 EP - 1367 VL - 39 IS - 6 UR - http://geodesic.mathdoc.fr/articles/10.4171/aihpc/32/ DO - 10.4171/aihpc/32 LA - en ID - AIHPC_2022__39_6_1319_0 ER -
%0 Journal Article %A Dávila, Juan %A del Pino, Manuel %A Medina, Maria %A Rodiac, Rémy %T Interacting helical traveling waves for the Gross–Pitaevskii equation %J Annales de l'I.H.P. Analyse non linéaire %D 2022 %P 1319-1367 %V 39 %N 6 %U http://geodesic.mathdoc.fr/articles/10.4171/aihpc/32/ %R 10.4171/aihpc/32 %G en %F AIHPC_2022__39_6_1319_0
Dávila, Juan; del Pino, Manuel; Medina, Maria; Rodiac, Rémy. Interacting helical traveling waves for the Gross–Pitaevskii equation. Annales de l'I.H.P. Analyse non linéaire, Tome 39 (2022) no. 6, pp. 1319-1367. doi: 10.4171/aihpc/32
Cité par Sources :