Interacting helical traveling waves for the Gross–Pitaevskii equation
Annales de l'I.H.P. Analyse non linéaire, Tome 39 (2022) no. 6, pp. 1319-1367

Voir la notice de l'article provenant de la source Numdam

We consider the three-dimensional Gross–Pitaevskii equation

i t ψ + Δ ψ + ( 1 - | ψ | 2 ) ψ = 0 for ψ : × 3

and construct traveling wave solutions to this equation. These are solutions of the form ψ(t,x)=u(x 1 ,x 2 ,x 3 -Ct) with a velocity C of order ε|logε| for a small parameter ε>0. We build two different types of solutions. For the first type, the functions u have a zero-set (vortex set) close to a union of n helices for n2 and near these helices u has degree 1. For the second type, the functions u have a vortex filament of degree -1 near the vertical axis e 3 and n4 vortex filaments of degree +1 near helices whose axis is e 3 . In both cases the helices are at a distance of order 1/(ε|logε|) from the axis and are solutions to the Klein–Majda–Damodaran system, supposed to describe the evolution of nearly parallel vortex filaments in ideal fluids. Analogous solutions have been constructed recently by the authors for the stationary Gross–Pitaevskii equation, namely the Ginzburg–Landau equation. To prove the existence of these solutions we use the Lyapunov–Schmidt method and a subtle separation between even and odd Fourier modes of the error of a suitable approximation.

Publié le :
DOI : 10.4171/aihpc/32
Classification : 74-XX
Keywords: Traveling waves equations, helices
@article{AIHPC_2022__39_6_1319_0,
     author = {D\'avila, Juan and del Pino, Manuel and Medina, Maria and Rodiac, R\'emy},
     title = {Interacting helical traveling waves for the {Gross{\textendash}Pitaevskii} equation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1319--1367},
     volume = {39},
     number = {6},
     year = {2022},
     doi = {10.4171/aihpc/32},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpc/32/}
}
TY  - JOUR
AU  - Dávila, Juan
AU  - del Pino, Manuel
AU  - Medina, Maria
AU  - Rodiac, Rémy
TI  - Interacting helical traveling waves for the Gross–Pitaevskii equation
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2022
SP  - 1319
EP  - 1367
VL  - 39
IS  - 6
UR  - http://geodesic.mathdoc.fr/articles/10.4171/aihpc/32/
DO  - 10.4171/aihpc/32
LA  - en
ID  - AIHPC_2022__39_6_1319_0
ER  - 
%0 Journal Article
%A Dávila, Juan
%A del Pino, Manuel
%A Medina, Maria
%A Rodiac, Rémy
%T Interacting helical traveling waves for the Gross–Pitaevskii equation
%J Annales de l'I.H.P. Analyse non linéaire
%D 2022
%P 1319-1367
%V 39
%N 6
%U http://geodesic.mathdoc.fr/articles/10.4171/aihpc/32/
%R 10.4171/aihpc/32
%G en
%F AIHPC_2022__39_6_1319_0
Dávila, Juan; del Pino, Manuel; Medina, Maria; Rodiac, Rémy. Interacting helical traveling waves for the Gross–Pitaevskii equation. Annales de l'I.H.P. Analyse non linéaire, Tome 39 (2022) no. 6, pp. 1319-1367. doi: 10.4171/aihpc/32

Cité par Sources :