Voir la notice de l'article provenant de la source Numdam
Hyperbolic systems in one-dimensional space are frequently used in the modeling of many physical systems. In our recent works we introduced time-independent feedbacks leading to finite stabilization in optimal time of homogeneous linear and quasilinear hyperbolic systems. In this work we present Lyapunov’s functions for these feedbacks and use estimates for Lyapunov’s functions to rediscover the finite stabilization results.
@article{AIHPC_2022__39_5_1235_0, author = {Coron, Jean-Michel and Nguyen, Hoai-Minh}, title = {Lyapunov functions and finite-time stabilization in optimal time for homogeneous linear and quasilinear hyperbolic systems}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1235--1260}, volume = {39}, number = {5}, year = {2022}, doi = {10.4171/aihpc/30}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpc/30/} }
TY - JOUR AU - Coron, Jean-Michel AU - Nguyen, Hoai-Minh TI - Lyapunov functions and finite-time stabilization in optimal time for homogeneous linear and quasilinear hyperbolic systems JO - Annales de l'I.H.P. Analyse non linéaire PY - 2022 SP - 1235 EP - 1260 VL - 39 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.4171/aihpc/30/ DO - 10.4171/aihpc/30 LA - en ID - AIHPC_2022__39_5_1235_0 ER -
%0 Journal Article %A Coron, Jean-Michel %A Nguyen, Hoai-Minh %T Lyapunov functions and finite-time stabilization in optimal time for homogeneous linear and quasilinear hyperbolic systems %J Annales de l'I.H.P. Analyse non linéaire %D 2022 %P 1235-1260 %V 39 %N 5 %U http://geodesic.mathdoc.fr/articles/10.4171/aihpc/30/ %R 10.4171/aihpc/30 %G en %F AIHPC_2022__39_5_1235_0
Coron, Jean-Michel; Nguyen, Hoai-Minh. Lyapunov functions and finite-time stabilization in optimal time for homogeneous linear and quasilinear hyperbolic systems. Annales de l'I.H.P. Analyse non linéaire, Tome 39 (2022) no. 5, pp. 1235-1260. doi: 10.4171/aihpc/30
Cité par Sources :