Reaction–diffusion equations in the half-space
Annales de l'I.H.P. Analyse non linéaire, Tome 39 (2022) no. 5, pp. 1053-1095

Voir la notice de l'article provenant de la source Numdam

We study reaction–diffusion equations of various types in the half-space. For bistable reactions with Dirichlet boundary conditions, we prove conditional uniqueness: there is a unique nonzero bounded steady state which exceeds the bistable threshold on large balls. Moreover, solutions starting from sufficiently large initial data converge to this steady state as t. For compactly supported initial data, the asymptotic speed of this propagation agrees with the unique speed c * of the one-dimensional traveling wave. We furthermore construct a traveling wave in the half-plane of speed c * .

In parallel, we show analogous results for ignition reactions under both Dirichlet and Robin boundary conditions. Using our ignition construction, we obtain stronger results for monostable reactions with the same boundary conditions. For such reactions, we show in general that there is a unique nonzero bounded steady state. Furthermore, monostable reactions exhibit the hair-trigger effect: every solution with nontrivial initial data converges to this steady state as t. Given compactly supported initial data, this disturbance propagates at a speed c * equal to the minimal speed of one-dimensional traveling waves. We also construct monostable traveling waves in the Dirichlet or Robin half-plane with any speed cc * .

Accepté le :
Publié le :
DOI : 10.4171/aihpc/27
Classification : 35K57, 35B40, 35C07
Keywords: Reaction–diffusion, monostable, steady state, spreading phenomena, Traveling wave
@article{AIHPC_2022__39_5_1053_0,
     author = {Berestycki, Henri and Graham, Cole},
     title = {Reaction{\textendash}diffusion equations in the half-space},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1053--1095},
     volume = {39},
     number = {5},
     year = {2022},
     doi = {10.4171/aihpc/27},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpc/27/}
}
TY  - JOUR
AU  - Berestycki, Henri
AU  - Graham, Cole
TI  - Reaction–diffusion equations in the half-space
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2022
SP  - 1053
EP  - 1095
VL  - 39
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.4171/aihpc/27/
DO  - 10.4171/aihpc/27
LA  - en
ID  - AIHPC_2022__39_5_1053_0
ER  - 
%0 Journal Article
%A Berestycki, Henri
%A Graham, Cole
%T Reaction–diffusion equations in the half-space
%J Annales de l'I.H.P. Analyse non linéaire
%D 2022
%P 1053-1095
%V 39
%N 5
%U http://geodesic.mathdoc.fr/articles/10.4171/aihpc/27/
%R 10.4171/aihpc/27
%G en
%F AIHPC_2022__39_5_1053_0
Berestycki, Henri; Graham, Cole. Reaction–diffusion equations in the half-space. Annales de l'I.H.P. Analyse non linéaire, Tome 39 (2022) no. 5, pp. 1053-1095. doi: 10.4171/aihpc/27

Cité par Sources :