Traveling wave solutions to the Allen–Cahn equation
Annales de l'I.H.P. Analyse non linéaire, Tome 39 (2022) no. 4, pp. 905-926

Voir la notice de l'article provenant de la source Numdam

For the Allen–Cahn equation, it is well known that there is a monotone standing wave joining the balanced wells of the potential. In this paper we study the existence of traveling wave solutions for the Allen–Cahn equation on an infinite channel. Such traveling wave solutions possess a large number of oscillations and they are obtained with the aid of variational arguments.

Accepté le :
Publié le :
DOI : 10.4171/aihpc/23
Classification : 35K57, 35C07, 58E05
Keywords: Ljusternik–Schnirelman theory, Allen–Cahn equation, Traveling wave, Variational method
@article{AIHPC_2022__39_4_905_0,
     author = {Chen, Chao-Nien and Coti Zelati, Vittorio},
     title = {Traveling wave solutions to the {Allen{\textendash}Cahn} equation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {905--926},
     volume = {39},
     number = {4},
     year = {2022},
     doi = {10.4171/aihpc/23},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpc/23/}
}
TY  - JOUR
AU  - Chen, Chao-Nien
AU  - Coti Zelati, Vittorio
TI  - Traveling wave solutions to the Allen–Cahn equation
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2022
SP  - 905
EP  - 926
VL  - 39
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.4171/aihpc/23/
DO  - 10.4171/aihpc/23
LA  - en
ID  - AIHPC_2022__39_4_905_0
ER  - 
%0 Journal Article
%A Chen, Chao-Nien
%A Coti Zelati, Vittorio
%T Traveling wave solutions to the Allen–Cahn equation
%J Annales de l'I.H.P. Analyse non linéaire
%D 2022
%P 905-926
%V 39
%N 4
%U http://geodesic.mathdoc.fr/articles/10.4171/aihpc/23/
%R 10.4171/aihpc/23
%G en
%F AIHPC_2022__39_4_905_0
Chen, Chao-Nien; Coti Zelati, Vittorio. Traveling wave solutions to the Allen–Cahn equation. Annales de l'I.H.P. Analyse non linéaire, Tome 39 (2022) no. 4, pp. 905-926. doi: 10.4171/aihpc/23

Cité par Sources :