Voir la notice de l'article provenant de la source Numdam
For the Allen–Cahn equation, it is well known that there is a monotone standing wave joining the balanced wells of the potential. In this paper we study the existence of traveling wave solutions for the Allen–Cahn equation on an infinite channel. Such traveling wave solutions possess a large number of oscillations and they are obtained with the aid of variational arguments.
@article{AIHPC_2022__39_4_905_0, author = {Chen, Chao-Nien and Coti Zelati, Vittorio}, title = {Traveling wave solutions to the {Allen{\textendash}Cahn} equation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {905--926}, volume = {39}, number = {4}, year = {2022}, doi = {10.4171/aihpc/23}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpc/23/} }
TY - JOUR AU - Chen, Chao-Nien AU - Coti Zelati, Vittorio TI - Traveling wave solutions to the Allen–Cahn equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2022 SP - 905 EP - 926 VL - 39 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.4171/aihpc/23/ DO - 10.4171/aihpc/23 LA - en ID - AIHPC_2022__39_4_905_0 ER -
%0 Journal Article %A Chen, Chao-Nien %A Coti Zelati, Vittorio %T Traveling wave solutions to the Allen–Cahn equation %J Annales de l'I.H.P. Analyse non linéaire %D 2022 %P 905-926 %V 39 %N 4 %U http://geodesic.mathdoc.fr/articles/10.4171/aihpc/23/ %R 10.4171/aihpc/23 %G en %F AIHPC_2022__39_4_905_0
Chen, Chao-Nien; Coti Zelati, Vittorio. Traveling wave solutions to the Allen–Cahn equation. Annales de l'I.H.P. Analyse non linéaire, Tome 39 (2022) no. 4, pp. 905-926. doi: 10.4171/aihpc/23
Cité par Sources :