Refined asymptotics for the blow-up solution of the complex Ginzburg–Landau equation in the subcritical case
Annales de l'I.H.P. Analyse non linéaire, Tome 39 (2022) no. 1, pp. 41-85

Voir la notice de l'article provenant de la source Numdam

In this paper, we aim to refine the blow-up behavior for the complex Ginzburg–Landau (CGL) equation in some subcritical case. More precisely, we construct blow-up solutions and refine their blow-up profile to the next order.

Accepté le :
Publié le :
DOI : 10.4171/aihpc/2
Classification : 35K57, 35K40, 35B44
Keywords: Blow-up profile, complex Ginzburg–Landau equation
@article{AIHPC_2022__39_1_41_0,
     author = {Duong, Giao Ky and Nouaili, Nejla and Zaag, Hatem},
     title = {Refined asymptotics for the blow-up solution of the complex {Ginzburg{\textendash}Landau} equation in the subcritical case},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {41--85},
     volume = {39},
     number = {1},
     year = {2022},
     doi = {10.4171/aihpc/2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpc/2/}
}
TY  - JOUR
AU  - Duong, Giao Ky
AU  - Nouaili, Nejla
AU  - Zaag, Hatem
TI  - Refined asymptotics for the blow-up solution of the complex Ginzburg–Landau equation in the subcritical case
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2022
SP  - 41
EP  - 85
VL  - 39
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4171/aihpc/2/
DO  - 10.4171/aihpc/2
LA  - en
ID  - AIHPC_2022__39_1_41_0
ER  - 
%0 Journal Article
%A Duong, Giao Ky
%A Nouaili, Nejla
%A Zaag, Hatem
%T Refined asymptotics for the blow-up solution of the complex Ginzburg–Landau equation in the subcritical case
%J Annales de l'I.H.P. Analyse non linéaire
%D 2022
%P 41-85
%V 39
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4171/aihpc/2/
%R 10.4171/aihpc/2
%G en
%F AIHPC_2022__39_1_41_0
Duong, Giao Ky; Nouaili, Nejla; Zaag, Hatem. Refined asymptotics for the blow-up solution of the complex Ginzburg–Landau equation in the subcritical case. Annales de l'I.H.P. Analyse non linéaire, Tome 39 (2022) no. 1, pp. 41-85. doi: 10.4171/aihpc/2

Cité par Sources :