Voir la notice de l'article provenant de la source Numdam
In this paper, we aim to refine the blow-up behavior for the complex Ginzburg–Landau (CGL) equation in some subcritical case. More precisely, we construct blow-up solutions and refine their blow-up profile to the next order.
@article{AIHPC_2022__39_1_41_0, author = {Duong, Giao Ky and Nouaili, Nejla and Zaag, Hatem}, title = {Refined asymptotics for the blow-up solution of the complex {Ginzburg{\textendash}Landau} equation in the subcritical case}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {41--85}, volume = {39}, number = {1}, year = {2022}, doi = {10.4171/aihpc/2}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpc/2/} }
TY - JOUR AU - Duong, Giao Ky AU - Nouaili, Nejla AU - Zaag, Hatem TI - Refined asymptotics for the blow-up solution of the complex Ginzburg–Landau equation in the subcritical case JO - Annales de l'I.H.P. Analyse non linéaire PY - 2022 SP - 41 EP - 85 VL - 39 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4171/aihpc/2/ DO - 10.4171/aihpc/2 LA - en ID - AIHPC_2022__39_1_41_0 ER -
%0 Journal Article %A Duong, Giao Ky %A Nouaili, Nejla %A Zaag, Hatem %T Refined asymptotics for the blow-up solution of the complex Ginzburg–Landau equation in the subcritical case %J Annales de l'I.H.P. Analyse non linéaire %D 2022 %P 41-85 %V 39 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4171/aihpc/2/ %R 10.4171/aihpc/2 %G en %F AIHPC_2022__39_1_41_0
Duong, Giao Ky; Nouaili, Nejla; Zaag, Hatem. Refined asymptotics for the blow-up solution of the complex Ginzburg–Landau equation in the subcritical case. Annales de l'I.H.P. Analyse non linéaire, Tome 39 (2022) no. 1, pp. 41-85. doi: 10.4171/aihpc/2
Cité par Sources :