Voir la notice de l'article provenant de la source Numdam
Recently, Bjorland and Schonbek [Ann. Inst. H. Poincaré Anal. Non Linéaire 25 (2008) 907–936] investigated the upper bound of the decay rate for the solution to the Lagrangian-averaged Navier–Stokes- equation under the condition that the initial data belongs to with . The decay rate can eventually be shown to be optimal if the average of the initial data is nonzero. Thus, the target in this paper is to study the optimal decay rate of the solution when the average of the initial data is zero. If the initial data belongs to and some weighted Sobolev space, we show that the lower and upper bounds of decay rates for the th-order () spatial derivatives of the solution tending to zero in -norm are , which implies these decay rates are optimal. As a by-product, we show that the optimal decay rate (including lower and upper bounds) of the time derivative of the solution tending to zero in -norm is .
@article{AIHPC_2022__39_4_761_0, author = {Gao, Jincheng and Lyu, Zeyu and Yao, Zheng-an}, title = {Optimal decay rate for higher-order derivatives of the solution to the {Lagrangian-averaged} {Navier{\textendash}Stokes-}$\alpha$ equation in $\mathbb{R}^3$}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {761--791}, volume = {39}, number = {4}, year = {2022}, doi = {10.4171/aihpc/19}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpc/19/} }
TY - JOUR AU - Gao, Jincheng AU - Lyu, Zeyu AU - Yao, Zheng-an TI - Optimal decay rate for higher-order derivatives of the solution to the Lagrangian-averaged Navier–Stokes-$\alpha$ equation in $\mathbb{R}^3$ JO - Annales de l'I.H.P. Analyse non linéaire PY - 2022 SP - 761 EP - 791 VL - 39 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.4171/aihpc/19/ DO - 10.4171/aihpc/19 LA - en ID - AIHPC_2022__39_4_761_0 ER -
%0 Journal Article %A Gao, Jincheng %A Lyu, Zeyu %A Yao, Zheng-an %T Optimal decay rate for higher-order derivatives of the solution to the Lagrangian-averaged Navier–Stokes-$\alpha$ equation in $\mathbb{R}^3$ %J Annales de l'I.H.P. Analyse non linéaire %D 2022 %P 761-791 %V 39 %N 4 %U http://geodesic.mathdoc.fr/articles/10.4171/aihpc/19/ %R 10.4171/aihpc/19 %G en %F AIHPC_2022__39_4_761_0
Gao, Jincheng; Lyu, Zeyu; Yao, Zheng-an. Optimal decay rate for higher-order derivatives of the solution to the Lagrangian-averaged Navier–Stokes-$\alpha$ equation in $\mathbb{R}^3$. Annales de l'I.H.P. Analyse non linéaire, Tome 39 (2022) no. 4, pp. 761-791. doi: 10.4171/aihpc/19
Cité par Sources :