Optimal decay rate for higher-order derivatives of the solution to the Lagrangian-averaged Navier–Stokes-α equation in 3
Annales de l'I.H.P. Analyse non linéaire, Tome 39 (2022) no. 4, pp. 761-791

Voir la notice de l'article provenant de la source Numdam

Recently, Bjorland and Schonbek [Ann. Inst. H. Poincaré Anal. Non Linéaire 25 (2008) 907–936] investigated the upper bound of the decay rate for the solution to the Lagrangian-averaged Navier–Stokes-α equation under the condition that the initial data belongs to L 1 ( n )H σ N ( n ) with n=2,3,4. The decay rate can eventually be shown to be optimal if the average of the initial data is nonzero. Thus, the target in this paper is to study the optimal decay rate of the solution when the average of the initial data is zero. If the initial data belongs to L 1 ( 3 )H σ N ( 3 ) and some weighted Sobolev space, we show that the lower and upper bounds of decay rates for the kth-order (k[0,N]) spatial derivatives of the solution tending to zero in L 2 -norm are (1+t) -5+2k 4 , which implies these decay rates are optimal. As a by-product, we show that the optimal decay rate (including lower and upper bounds) of the time derivative of the solution tending to zero in L 2 -norm is (1+t) -9 4 .

Accepté le :
Publié le :
DOI : 10.4171/aihpc/19
Classification : 35B40, 35Q35
Keywords: Lagrangian-averaged Navier–Stokes-α equation, optimal decay rate
@article{AIHPC_2022__39_4_761_0,
     author = {Gao, Jincheng and Lyu, Zeyu and Yao, Zheng-an},
     title = {Optimal decay rate for higher-order derivatives of the solution to the {Lagrangian-averaged} {Navier{\textendash}Stokes-}$\alpha$ equation in $\mathbb{R}^3$},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {761--791},
     volume = {39},
     number = {4},
     year = {2022},
     doi = {10.4171/aihpc/19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpc/19/}
}
TY  - JOUR
AU  - Gao, Jincheng
AU  - Lyu, Zeyu
AU  - Yao, Zheng-an
TI  - Optimal decay rate for higher-order derivatives of the solution to the Lagrangian-averaged Navier–Stokes-$\alpha$ equation in $\mathbb{R}^3$
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2022
SP  - 761
EP  - 791
VL  - 39
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.4171/aihpc/19/
DO  - 10.4171/aihpc/19
LA  - en
ID  - AIHPC_2022__39_4_761_0
ER  - 
%0 Journal Article
%A Gao, Jincheng
%A Lyu, Zeyu
%A Yao, Zheng-an
%T Optimal decay rate for higher-order derivatives of the solution to the Lagrangian-averaged Navier–Stokes-$\alpha$ equation in $\mathbb{R}^3$
%J Annales de l'I.H.P. Analyse non linéaire
%D 2022
%P 761-791
%V 39
%N 4
%U http://geodesic.mathdoc.fr/articles/10.4171/aihpc/19/
%R 10.4171/aihpc/19
%G en
%F AIHPC_2022__39_4_761_0
Gao, Jincheng; Lyu, Zeyu; Yao, Zheng-an. Optimal decay rate for higher-order derivatives of the solution to the Lagrangian-averaged Navier–Stokes-$\alpha$ equation in $\mathbb{R}^3$. Annales de l'I.H.P. Analyse non linéaire, Tome 39 (2022) no. 4, pp. 761-791. doi: 10.4171/aihpc/19

Cité par Sources :