Voir la notice de l'article provenant de la source Numdam
Given any , we show that if is an open convex domain (e.g. a half-space), and is a solution to the minimal surface equation which agrees with a linear function on , then must itself be linear.
@article{AIHPC_2022__39_3_749_0, author = {Edelen, Nick and Wang, Zhehui}, title = {A {Bernstein-type} theorem for minimal graphs over convex domains}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {749--760}, volume = {39}, number = {3}, year = {2022}, doi = {10.4171/aihpc/18}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpc/18/} }
TY - JOUR AU - Edelen, Nick AU - Wang, Zhehui TI - A Bernstein-type theorem for minimal graphs over convex domains JO - Annales de l'I.H.P. Analyse non linéaire PY - 2022 SP - 749 EP - 760 VL - 39 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4171/aihpc/18/ DO - 10.4171/aihpc/18 LA - en ID - AIHPC_2022__39_3_749_0 ER -
%0 Journal Article %A Edelen, Nick %A Wang, Zhehui %T A Bernstein-type theorem for minimal graphs over convex domains %J Annales de l'I.H.P. Analyse non linéaire %D 2022 %P 749-760 %V 39 %N 3 %U http://geodesic.mathdoc.fr/articles/10.4171/aihpc/18/ %R 10.4171/aihpc/18 %G en %F AIHPC_2022__39_3_749_0
Edelen, Nick; Wang, Zhehui. A Bernstein-type theorem for minimal graphs over convex domains. Annales de l'I.H.P. Analyse non linéaire, Tome 39 (2022) no. 3, pp. 749-760. doi: 10.4171/aihpc/18
Cité par Sources :