A Bernstein-type theorem for minimal graphs over convex domains
Annales de l'I.H.P. Analyse non linéaire, Tome 39 (2022) no. 3, pp. 749-760

Voir la notice de l'article provenant de la source Numdam

Given any n2, we show that if Ω n is an open convex domain (e.g. a half-space), and u:Ω is a solution to the minimal surface equation which agrees with a linear function on δΩ, then u must itself be linear.

Accepté le :
Publié le :
DOI : 10.4171/aihpc/18
Classification : 49Q05, 35A02, 35J25, 53A10
Keywords: Minimal graphs, Bernstein theorem, convex domain, Dirichlet boundary
@article{AIHPC_2022__39_3_749_0,
     author = {Edelen, Nick and Wang, Zhehui},
     title = {A {Bernstein-type} theorem for minimal graphs over convex domains},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {749--760},
     volume = {39},
     number = {3},
     year = {2022},
     doi = {10.4171/aihpc/18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpc/18/}
}
TY  - JOUR
AU  - Edelen, Nick
AU  - Wang, Zhehui
TI  - A Bernstein-type theorem for minimal graphs over convex domains
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2022
SP  - 749
EP  - 760
VL  - 39
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4171/aihpc/18/
DO  - 10.4171/aihpc/18
LA  - en
ID  - AIHPC_2022__39_3_749_0
ER  - 
%0 Journal Article
%A Edelen, Nick
%A Wang, Zhehui
%T A Bernstein-type theorem for minimal graphs over convex domains
%J Annales de l'I.H.P. Analyse non linéaire
%D 2022
%P 749-760
%V 39
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4171/aihpc/18/
%R 10.4171/aihpc/18
%G en
%F AIHPC_2022__39_3_749_0
Edelen, Nick; Wang, Zhehui. A Bernstein-type theorem for minimal graphs over convex domains. Annales de l'I.H.P. Analyse non linéaire, Tome 39 (2022) no. 3, pp. 749-760. doi: 10.4171/aihpc/18

Cité par Sources :