A fast regularisation of a Newtonian vortex equation
Annales de l'I.H.P. Analyse non linéaire, Tome 39 (2022) no. 3, pp. 705-747

Voir la notice de l'article provenant de la source Numdam

We consider equations of the form u t =·(γ(u)N(u)), where N is the Newtonian potential (inverse of the Laplacian) posed in the whole space d , and γ(u) is the mobility. For linear mobility, γ(u)=u, the equation and some variations have been proposed as a model for superconductivity or superfluidity. In that case the theory leads to uniqueness of bounded weak solutions having the property of compact space support, and in particular there is a special solution in the form of a disk vortex of constant intensity in space u=c 1 t -1 supported in a ball that spreads in time like c 2 t 1/d , thus showing a discontinuous leading front.

In this paper we propose the model with sublinear mobility γ(u)=u α , with 0<α<1, and prove that non-negative solutions recover positivity everywhere, and moreover display a fat tail at infinity. The model acts in many ways as a regularisation of the previous one. In particular, we find that the equivalent of the previous vortex is an explicit self-similar solution decaying in time like u=O(t -1/α ) with a space tail with size u=O(|x| -d/(1-α) ). We restrict the analysis to radial solutions and construct solutions by the method of characteristics. We introduce the mass function, which solves an unusual variation of Burgers’ equation, and plays an important role in the analysis. We show well-posedness in the sense of viscosity solutions. We also construct numerical finite-difference convergent schemes.

Accepté le :
Publié le :
DOI : 10.4171/aihpc/17
Classification : 35L65, 35D40, 65M25
Keywords: Non-linear mobility equations, viscosity solutions, Conservation laws, shock conditions, regularisation
@article{AIHPC_2022__39_3_705_0,
     author = {Carrillo, Jos\'e A. and G\'omez-Castro, David and V\'azquez, Juan Luis},
     title = {A fast regularisation of a {Newtonian} vortex equation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {705--747},
     volume = {39},
     number = {3},
     year = {2022},
     doi = {10.4171/aihpc/17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpc/17/}
}
TY  - JOUR
AU  - Carrillo, José A.
AU  - Gómez-Castro, David
AU  - Vázquez, Juan Luis
TI  - A fast regularisation of a Newtonian vortex equation
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2022
SP  - 705
EP  - 747
VL  - 39
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4171/aihpc/17/
DO  - 10.4171/aihpc/17
LA  - en
ID  - AIHPC_2022__39_3_705_0
ER  - 
%0 Journal Article
%A Carrillo, José A.
%A Gómez-Castro, David
%A Vázquez, Juan Luis
%T A fast regularisation of a Newtonian vortex equation
%J Annales de l'I.H.P. Analyse non linéaire
%D 2022
%P 705-747
%V 39
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4171/aihpc/17/
%R 10.4171/aihpc/17
%G en
%F AIHPC_2022__39_3_705_0
Carrillo, José A.; Gómez-Castro, David; Vázquez, Juan Luis. A fast regularisation of a Newtonian vortex equation. Annales de l'I.H.P. Analyse non linéaire, Tome 39 (2022) no. 3, pp. 705-747. doi: 10.4171/aihpc/17

Cité par Sources :