Voir la notice de l'article provenant de la source Numdam
This paper is dedicated to the regularity of the optimal sets for the second eigenvalue of the Dirichlet Laplacian. Precisely, we prove that if the set minimizes the functional , among all subsets of a smooth bounded open set , where is the second eigenvalue of the Dirichlet Laplacian on and is a fixed constant, then is equivalent to the union of two disjoint open sets and , which are -regular up to a (possibly empty) closed set of Hausdorff dimension at most , contained in the one-phase free boundaries and .
@article{AIHPC_2022__39_3_529_0, author = {Mazzoleni, Dario and Trey, Baptiste and Velichkov, Bozhidar}, title = {Regularity of the optimal sets for the second {Dirichlet} eigenvalue}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {529--573}, volume = {39}, number = {3}, year = {2022}, doi = {10.4171/aihpc/14}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpc/14/} }
TY - JOUR AU - Mazzoleni, Dario AU - Trey, Baptiste AU - Velichkov, Bozhidar TI - Regularity of the optimal sets for the second Dirichlet eigenvalue JO - Annales de l'I.H.P. Analyse non linéaire PY - 2022 SP - 529 EP - 573 VL - 39 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4171/aihpc/14/ DO - 10.4171/aihpc/14 LA - en ID - AIHPC_2022__39_3_529_0 ER -
%0 Journal Article %A Mazzoleni, Dario %A Trey, Baptiste %A Velichkov, Bozhidar %T Regularity of the optimal sets for the second Dirichlet eigenvalue %J Annales de l'I.H.P. Analyse non linéaire %D 2022 %P 529-573 %V 39 %N 3 %U http://geodesic.mathdoc.fr/articles/10.4171/aihpc/14/ %R 10.4171/aihpc/14 %G en %F AIHPC_2022__39_3_529_0
Mazzoleni, Dario; Trey, Baptiste; Velichkov, Bozhidar. Regularity of the optimal sets for the second Dirichlet eigenvalue. Annales de l'I.H.P. Analyse non linéaire, Tome 39 (2022) no. 3, pp. 529-573. doi: 10.4171/aihpc/14
Cité par Sources :