Optimal linearization of vector fields on the torus in non-analytic Gevrey classes
Annales de l'I.H.P. Analyse non linéaire, Tome 39 (2022) no. 3, pp. 501-528

Voir la notice de l'article provenant de la source Numdam

We study linear and non-linear small divisors problems in analytic and non-analytic regularity. We observe that the Bruno arithmetic condition, which is usually attached to non-linear analytic problems, can also be characterized as the optimal condition to solve the linear problem in some fixed non-quasi-analytic class. Based on this observation, it is natural to conjecture that the optimal arithmetic condition for the linear problem is also optimal for non-linear small divisors problems in any reasonable non-quasi-analytic classes. Our main result proves this conjecture in a representative non-linear problem, which is the linearization of vector fields on the torus, in the most natural non-quasi-analytic class, which is the Gevrey class. The proof follows Moser’s argument of approximation by analytic functions, and uses works of Popov, Rüssmann and Pöschel in an essential way.

Accepté le :
Publié le :
DOI : 10.4171/aihpc/12
Classification : 37J25, 37J40
Keywords: Gevrey classes
@article{AIHPC_2022__39_3_501_0,
     author = {Bounemoura, Abed},
     title = {Optimal linearization of vector fields on the torus in non-analytic {Gevrey} classes},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {501--528},
     volume = {39},
     number = {3},
     year = {2022},
     doi = {10.4171/aihpc/12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpc/12/}
}
TY  - JOUR
AU  - Bounemoura, Abed
TI  - Optimal linearization of vector fields on the torus in non-analytic Gevrey classes
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2022
SP  - 501
EP  - 528
VL  - 39
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4171/aihpc/12/
DO  - 10.4171/aihpc/12
LA  - en
ID  - AIHPC_2022__39_3_501_0
ER  - 
%0 Journal Article
%A Bounemoura, Abed
%T Optimal linearization of vector fields on the torus in non-analytic Gevrey classes
%J Annales de l'I.H.P. Analyse non linéaire
%D 2022
%P 501-528
%V 39
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4171/aihpc/12/
%R 10.4171/aihpc/12
%G en
%F AIHPC_2022__39_3_501_0
Bounemoura, Abed. Optimal linearization of vector fields on the torus in non-analytic Gevrey classes. Annales de l'I.H.P. Analyse non linéaire, Tome 39 (2022) no. 3, pp. 501-528. doi: 10.4171/aihpc/12

Cité par Sources :