We study linear and non-linear small divisors problems in analytic and non-analytic regularity. We observe that the Bruno arithmetic condition, which is usually attached to non-linear analytic problems, can also be characterized as the optimal condition to solve the linear problem in some fixed non-quasi-analytic class. Based on this observation, it is natural to conjecture that the optimal arithmetic condition for the linear problem is also optimal for non-linear small divisors problems in any reasonable non-quasi-analytic classes. Our main result proves this conjecture in a representative non-linear problem, which is the linearization of vector fields on the torus, in the most natural non-quasi-analytic class, which is the Gevrey class. The proof follows Moser’s argument of approximation by analytic functions, and uses works of Popov, Rüssmann and Pöschel in an essential way.
Publié le :
Keywords: Gevrey classes
@article{AIHPC_2022__39_3_501_0,
author = {Bounemoura, Abed},
title = {Optimal linearization of vector fields on the torus in non-analytic {Gevrey} classes},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {501--528},
year = {2022},
volume = {39},
number = {3},
doi = {10.4171/aihpc/12},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpc/12/}
}
TY - JOUR AU - Bounemoura, Abed TI - Optimal linearization of vector fields on the torus in non-analytic Gevrey classes JO - Annales de l'I.H.P. Analyse non linéaire PY - 2022 SP - 501 EP - 528 VL - 39 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4171/aihpc/12/ DO - 10.4171/aihpc/12 LA - en ID - AIHPC_2022__39_3_501_0 ER -
%0 Journal Article %A Bounemoura, Abed %T Optimal linearization of vector fields on the torus in non-analytic Gevrey classes %J Annales de l'I.H.P. Analyse non linéaire %D 2022 %P 501-528 %V 39 %N 3 %U http://geodesic.mathdoc.fr/articles/10.4171/aihpc/12/ %R 10.4171/aihpc/12 %G en %F AIHPC_2022__39_3_501_0
Bounemoura, Abed. Optimal linearization of vector fields on the torus in non-analytic Gevrey classes. Annales de l'I.H.P. Analyse non linéaire, Tome 39 (2022) no. 3, pp. 501-528. doi: 10.4171/aihpc/12
Cité par Sources :