Voir la notice de l'article provenant de la source Numdam
We study the effects of independent, identically distributed random perturbations of amplitude on the asymptotic dynamics of one-parameter families of smooth multimodal maps which are “predominantly expanding”, i.e., away from small neighborhoods of the critical set . We obtain, for any , a checkable, finite-time criterion on the parameter for random perturbations of the map to exhibit (i) a unique stationary measure and (ii) a positive Lyapunov exponent comparable to . This stands in contrast with the situation for the deterministic dynamics of , the chaotic regimes of which are determined by typically uncheckable, infinite-time conditions. Moreover, our finite-time criterion depends on only iterates of the deterministic dynamics of , which grows quite slowly as .
@article{AIHPC_2022__39_2_419_0, author = {Blumenthal, Alex and Yang, Yun}, title = {Positive {Lyapunov} exponent for random perturbations of predominantly expanding multimodal circle maps}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {419--455}, volume = {39}, number = {2}, year = {2022}, doi = {10.4171/aihpc/11}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpc/11/} }
TY - JOUR AU - Blumenthal, Alex AU - Yang, Yun TI - Positive Lyapunov exponent for random perturbations of predominantly expanding multimodal circle maps JO - Annales de l'I.H.P. Analyse non linéaire PY - 2022 SP - 419 EP - 455 VL - 39 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4171/aihpc/11/ DO - 10.4171/aihpc/11 LA - en ID - AIHPC_2022__39_2_419_0 ER -
%0 Journal Article %A Blumenthal, Alex %A Yang, Yun %T Positive Lyapunov exponent for random perturbations of predominantly expanding multimodal circle maps %J Annales de l'I.H.P. Analyse non linéaire %D 2022 %P 419-455 %V 39 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4171/aihpc/11/ %R 10.4171/aihpc/11 %G en %F AIHPC_2022__39_2_419_0
Blumenthal, Alex; Yang, Yun. Positive Lyapunov exponent for random perturbations of predominantly expanding multimodal circle maps. Annales de l'I.H.P. Analyse non linéaire, Tome 39 (2022) no. 2, pp. 419-455. doi: 10.4171/aihpc/11
Cité par Sources :