Voir la notice de l'article provenant de la source Numdam
This paper investigates the projective dimension of the maximal right ring of quotients of a right non-singular ringR. Our discussion addresses the question under which conditions pd guarantees that the module is a direct sum of countably generated modules extending Matlis’ Theorem for integral domains to a non-commutative setting.
Albrecht, Ulrich 1 ; McQuaig, Bradley 1
@article{RSMUP_2020__143__81_0, author = {Albrecht, Ulrich and McQuaig, Bradley}, title = {Divisibility and duo-rings}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {81--103}, publisher = {European Mathematical Society Publishing House}, address = {Zuerich, Switzerland}, volume = {143}, year = {2020}, doi = {10.4171/RSMUP/40}, mrnumber = {4103740}, zbl = {1448.16001}, url = {http://geodesic.mathdoc.fr/articles/10.4171/RSMUP/40/} }
TY - JOUR AU - Albrecht, Ulrich AU - McQuaig, Bradley TI - Divisibility and duo-rings JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2020 SP - 81 EP - 103 VL - 143 PB - European Mathematical Society Publishing House PP - Zuerich, Switzerland UR - http://geodesic.mathdoc.fr/articles/10.4171/RSMUP/40/ DO - 10.4171/RSMUP/40 ID - RSMUP_2020__143__81_0 ER -
%0 Journal Article %A Albrecht, Ulrich %A McQuaig, Bradley %T Divisibility and duo-rings %J Rendiconti del Seminario Matematico della Università di Padova %D 2020 %P 81-103 %V 143 %I European Mathematical Society Publishing House %C Zuerich, Switzerland %U http://geodesic.mathdoc.fr/articles/10.4171/RSMUP/40/ %R 10.4171/RSMUP/40 %F RSMUP_2020__143__81_0
Albrecht, Ulrich; McQuaig, Bradley. Divisibility and duo-rings. Rendiconti del Seminario Matematico della Università di Padova, Tome 143 (2020), pp. 81-103. doi : 10.4171/RSMUP/40. http://geodesic.mathdoc.fr/articles/10.4171/RSMUP/40/
Cité par Sources :