On a fractional nonlinear equation on a bounded domain of
Rendiconti del Seminario Matematico della Università di Padova, Tome 143 (2020), pp. 1-33
Cet article a éte moissonné depuis la source Numdam
We establish perturbation results for a Nirenberg type equation involving the fractional Laplacian on a bounded domain of . Our method is based on the critical points at infinity theory of [6].
Publié le :
DOI : 10.4171/RSMUP/38
DOI : 10.4171/RSMUP/38
Classification :
35, 58
Mots-clés : Fractional P.D.E, variational method, Palais–Smale condition, critical points at infinity
Mots-clés : Fractional P.D.E, variational method, Palais–Smale condition, critical points at infinity
Affiliations des auteurs :
Sharaf, Khadijah 1
@article{RSMUP_2020__143__1_0,
author = {Sharaf, Khadijah},
title = {On a fractional nonlinear equation on a bounded domain of $\mathbb R^n$},
journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
pages = {1--33},
year = {2020},
publisher = {European Mathematical Society Publishing House},
address = {Zuerich, Switzerland},
volume = {143},
doi = {10.4171/RSMUP/38},
mrnumber = {4103738},
zbl = {1444.35067},
url = {http://geodesic.mathdoc.fr/articles/10.4171/RSMUP/38/}
}
TY - JOUR AU - Sharaf, Khadijah TI - On a fractional nonlinear equation on a bounded domain of $\mathbb R^n$ JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2020 SP - 1 EP - 33 VL - 143 PB - European Mathematical Society Publishing House PP - Zuerich, Switzerland UR - http://geodesic.mathdoc.fr/articles/10.4171/RSMUP/38/ DO - 10.4171/RSMUP/38 ID - RSMUP_2020__143__1_0 ER -
%0 Journal Article %A Sharaf, Khadijah %T On a fractional nonlinear equation on a bounded domain of $\mathbb R^n$ %J Rendiconti del Seminario Matematico della Università di Padova %D 2020 %P 1-33 %V 143 %I European Mathematical Society Publishing House %C Zuerich, Switzerland %U http://geodesic.mathdoc.fr/articles/10.4171/RSMUP/38/ %R 10.4171/RSMUP/38 %F RSMUP_2020__143__1_0
Sharaf, Khadijah. On a fractional nonlinear equation on a bounded domain of $\mathbb R^n$. Rendiconti del Seminario Matematico della Università di Padova, Tome 143 (2020), pp. 1-33. doi: 10.4171/RSMUP/38
Cité par Sources :