Voir la notice de l'article provenant de la source Numdam
Starting from a remark about the computation of Kashiwara–Schapira’s enhanced Laplace transform by using the Dolbeault complex of enhanced distributions, we explain how to obtain explicit holomorphic Paley–Wiener-type theorems. As an example, we get back some classical theorems due to Polya and Méril as limits of tempered Laplace-isomorphisms. In particular, we show how contour integrations naturally appear in this framework.
Dubussy, Christophe 1
@article{RSMUP_2019__142__181_0, author = {Dubussy, Christophe}, title = {Enhanced {Laplace} transform and holomorphic {Paley-Wiener-type} theorems}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {181--209}, publisher = {European Mathematical Society Publishing House}, address = {Zuerich, Switzerland}, volume = {142}, year = {2019}, doi = {10.4171/RSMUP/36}, mrnumber = {4032810}, zbl = {1450.44001}, url = {http://geodesic.mathdoc.fr/articles/10.4171/RSMUP/36/} }
TY - JOUR AU - Dubussy, Christophe TI - Enhanced Laplace transform and holomorphic Paley-Wiener-type theorems JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2019 SP - 181 EP - 209 VL - 142 PB - European Mathematical Society Publishing House PP - Zuerich, Switzerland UR - http://geodesic.mathdoc.fr/articles/10.4171/RSMUP/36/ DO - 10.4171/RSMUP/36 ID - RSMUP_2019__142__181_0 ER -
%0 Journal Article %A Dubussy, Christophe %T Enhanced Laplace transform and holomorphic Paley-Wiener-type theorems %J Rendiconti del Seminario Matematico della Università di Padova %D 2019 %P 181-209 %V 142 %I European Mathematical Society Publishing House %C Zuerich, Switzerland %U http://geodesic.mathdoc.fr/articles/10.4171/RSMUP/36/ %R 10.4171/RSMUP/36 %F RSMUP_2019__142__181_0
Dubussy, Christophe. Enhanced Laplace transform and holomorphic Paley-Wiener-type theorems. Rendiconti del Seminario Matematico della Università di Padova, Tome 142 (2019), pp. 181-209. doi : 10.4171/RSMUP/36. http://geodesic.mathdoc.fr/articles/10.4171/RSMUP/36/
Cité par Sources :