Voir la notice de l'article provenant de la source Numdam
The torsion anomalous conjecture states that for any variety in an abelian variety there are only finitely many maximal -torsion anomalous varieties. We prove this conjecture for of codimension 2 in a product of an elliptic curve without CM, complementing previous results for with CM. We also give an effective upper bound for the normalized height of these maximal -torsion anomalous varieties.
Hubschmid, Patrik 1 ; Viada, Evelina 1
@article{RSMUP_2019__141__209_0, author = {Hubschmid, Patrik and Viada, Evelina}, title = {An {Addendum} to the elliptic torsion anomalous conjecture in codimension 2}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {209--220}, publisher = {European Mathematical Society Publishing House}, address = {Zuerich, Switzerland}, volume = {141}, year = {2019}, doi = {10.4171/RSMUP/23}, mrnumber = {3962829}, zbl = {1472.11199}, url = {http://geodesic.mathdoc.fr/articles/10.4171/RSMUP/23/} }
TY - JOUR AU - Hubschmid, Patrik AU - Viada, Evelina TI - An Addendum to the elliptic torsion anomalous conjecture in codimension 2 JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2019 SP - 209 EP - 220 VL - 141 PB - European Mathematical Society Publishing House PP - Zuerich, Switzerland UR - http://geodesic.mathdoc.fr/articles/10.4171/RSMUP/23/ DO - 10.4171/RSMUP/23 ID - RSMUP_2019__141__209_0 ER -
%0 Journal Article %A Hubschmid, Patrik %A Viada, Evelina %T An Addendum to the elliptic torsion anomalous conjecture in codimension 2 %J Rendiconti del Seminario Matematico della Università di Padova %D 2019 %P 209-220 %V 141 %I European Mathematical Society Publishing House %C Zuerich, Switzerland %U http://geodesic.mathdoc.fr/articles/10.4171/RSMUP/23/ %R 10.4171/RSMUP/23 %F RSMUP_2019__141__209_0
Hubschmid, Patrik; Viada, Evelina. An Addendum to the elliptic torsion anomalous conjecture in codimension 2. Rendiconti del Seminario Matematico della Università di Padova, Tome 141 (2019), pp. 209-220. doi : 10.4171/RSMUP/23. http://geodesic.mathdoc.fr/articles/10.4171/RSMUP/23/
Cité par Sources :