New existence results for the mean field equation on compact surfaces via degree theory
Rendiconti del Seminario Matematico della Università di Padova, Tome 136 (2016), pp. 11-17
Voir la notice de l'article provenant de la source Numdam
We consider the following class of equations with exponential nonlinearities on a closed surface :
Classification :
35
Mots-clés : Geometric PDEs, Leray–Schauder degree, mean field equation
Mots-clés : Geometric PDEs, Leray–Schauder degree, mean field equation
Affiliations des auteurs :
Jevnikar, Aleks 1
@article{RSMUP_2016__136__11_0,
author = {Jevnikar, Aleks},
title = {New existence results for the mean field equation on compact surfaces via degree theory},
journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
pages = {11--17},
publisher = {European Mathematical Society Publishing House},
address = {Zuerich, Switzerland},
volume = {136},
year = {2016},
doi = {10.4171/RSMUP/136-2},
url = {http://geodesic.mathdoc.fr/articles/10.4171/RSMUP/136-2/}
}
TY - JOUR AU - Jevnikar, Aleks TI - New existence results for the mean field equation on compact surfaces via degree theory JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2016 SP - 11 EP - 17 VL - 136 PB - European Mathematical Society Publishing House PP - Zuerich, Switzerland UR - http://geodesic.mathdoc.fr/articles/10.4171/RSMUP/136-2/ DO - 10.4171/RSMUP/136-2 ID - RSMUP_2016__136__11_0 ER -
%0 Journal Article %A Jevnikar, Aleks %T New existence results for the mean field equation on compact surfaces via degree theory %J Rendiconti del Seminario Matematico della Università di Padova %D 2016 %P 11-17 %V 136 %I European Mathematical Society Publishing House %C Zuerich, Switzerland %U http://geodesic.mathdoc.fr/articles/10.4171/RSMUP/136-2/ %R 10.4171/RSMUP/136-2 %F RSMUP_2016__136__11_0
Jevnikar, Aleks. New existence results for the mean field equation on compact surfaces via degree theory. Rendiconti del Seminario Matematico della Università di Padova, Tome 136 (2016), pp. 11-17. doi: 10.4171/RSMUP/136-2
Cité par Sources :