On p-dependent local spectral properties of certain linear differential operators in $L^{p}(ℝ^{N})$
Studia Mathematica, Tome 130 (1998) no. 1, pp. 23-52

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The aim is to investigate certain spectral properties, such as decomposability, the spectral mapping property and the Lyubich-Matsaev property, for linear differential operators with constant coefficients ( and more general Fourier multiplier operators) acting in $L^p(ℝ^N)$. The criteria developed for such operators are quite general and p-dependent, i.e. they hold for a range of p in an interval about 2 (which is typically not (1,∞)). The main idea is to construct appropriate functional calculi: this is achieved via a combination of methods from the theory of Fourier multipliers and local spectral theory.
DOI : 10.4064/sm_1998_130_1_1_23_52

E. Albrecht 1 ; W. J. Ricker 1

1
@article{10_4064_sm_1998_130_1_1_23_52,
     author = {E. Albrecht and W. J. Ricker},
     title = {On p-dependent local spectral properties of certain linear differential operators in $L^{p}(\ensuremath{\mathbb{R}}^{N})$},
     journal = {Studia Mathematica},
     pages = {23--52},
     publisher = {mathdoc},
     volume = {130},
     number = {1},
     year = {1998},
     doi = {10.4064/sm_1998_130_1_1_23_52},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm_1998_130_1_1_23_52/}
}
TY  - JOUR
AU  - E. Albrecht
AU  - W. J. Ricker
TI  - On p-dependent local spectral properties of certain linear differential operators in $L^{p}(ℝ^{N})$
JO  - Studia Mathematica
PY  - 1998
SP  - 23
EP  - 52
VL  - 130
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm_1998_130_1_1_23_52/
DO  - 10.4064/sm_1998_130_1_1_23_52
LA  - en
ID  - 10_4064_sm_1998_130_1_1_23_52
ER  - 
%0 Journal Article
%A E. Albrecht
%A W. J. Ricker
%T On p-dependent local spectral properties of certain linear differential operators in $L^{p}(ℝ^{N})$
%J Studia Mathematica
%D 1998
%P 23-52
%V 130
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm_1998_130_1_1_23_52/
%R 10.4064/sm_1998_130_1_1_23_52
%G en
%F 10_4064_sm_1998_130_1_1_23_52
E. Albrecht; W. J. Ricker. On p-dependent local spectral properties of certain linear differential operators in $L^{p}(ℝ^{N})$. Studia Mathematica, Tome 130 (1998) no. 1, pp. 23-52. doi: 10.4064/sm_1998_130_1_1_23_52

Cité par Sources :