Leinert sets and complemented ideals in Fourier algebras
Studia Mathematica, Tome 239 (2017) no. 3, pp. 273-296

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show how complemented ideals in the Fourier algebra $A(G)$ of $G$ arise naturally from a class of thin sets known as Leinert sets. Moreover, we present an explicit example of a closed ideal in $A(\mathbb {F}_{N})$, where $\mathbb {F}_{N}$ is the free group on $N \ge 2$ generators, that is complemented in $A(\mathbb {F}_{N})$ but it is not completely complemented. Then by establishing an appropriate extension result for restriction algebras arising from Leinert sets, we show that any almost connected group $G$ for which every complemented ideal in $A(G)$ is also completely complemented must be amenable.
DOI : 10.4064/sm8733-3-2017
Keywords: complemented ideals fourier algebra arise naturally class thin sets known leinert sets moreover present explicit example closed ideal mathbb where mathbb group generators complemented mathbb completely complemented establishing appropriate extension result restriction algebras arising leinert sets almost connected group which every complemented ideal completely complemented amenable

Michael Brannan 1 ; Brian Forrest 1 ; Cameron Zwarich 1

1
@article{10_4064_sm8733_3_2017,
     author = {Michael Brannan and Brian Forrest and Cameron Zwarich},
     title = {Leinert sets and complemented ideals in {Fourier} algebras},
     journal = {Studia Mathematica},
     pages = {273--296},
     publisher = {mathdoc},
     volume = {239},
     number = {3},
     year = {2017},
     doi = {10.4064/sm8733-3-2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8733-3-2017/}
}
TY  - JOUR
AU  - Michael Brannan
AU  - Brian Forrest
AU  - Cameron Zwarich
TI  - Leinert sets and complemented ideals in Fourier algebras
JO  - Studia Mathematica
PY  - 2017
SP  - 273
EP  - 296
VL  - 239
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm8733-3-2017/
DO  - 10.4064/sm8733-3-2017
LA  - en
ID  - 10_4064_sm8733_3_2017
ER  - 
%0 Journal Article
%A Michael Brannan
%A Brian Forrest
%A Cameron Zwarich
%T Leinert sets and complemented ideals in Fourier algebras
%J Studia Mathematica
%D 2017
%P 273-296
%V 239
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8733-3-2017/
%R 10.4064/sm8733-3-2017
%G en
%F 10_4064_sm8733_3_2017
Michael Brannan; Brian Forrest; Cameron Zwarich. Leinert sets and complemented ideals in Fourier algebras. Studia Mathematica, Tome 239 (2017) no. 3, pp. 273-296. doi: 10.4064/sm8733-3-2017

Cité par Sources :