A mixing operator $T$ for which $(T, T^2)$ is not disjoint transitive
Studia Mathematica, Tome 237 (2017) no. 3, pp. 283-296
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Using a result from ergodic Ramsey theory, we answer a question posed by Bès, Martin, Peris and Shkarin by exhibiting a mixing operator $T$ on a Hilbert space such that the tuple $(T, T^2)$ is not disjoint transitive.
DOI : 10.4064/sm8714-10-2016
Keywords: using result ergodic ramsey theory answer question posed martin peris shkarin exhibiting mixing operator hilbert space tuple disjoint transitive

Yunied Puig  1

1 Dipartimento di Matematica “Federigo Enriques” Università degli Studi di Milano Via Saldini 50 20133 Milano, Italy
@article{10_4064_sm8714_10_2016,
     author = {Yunied Puig},
     title = {A mixing operator $T$ for which $(T, T^2)$ is not disjoint transitive},
     journal = {Studia Mathematica},
     pages = {283--296},
     year = {2017},
     volume = {237},
     number = {3},
     doi = {10.4064/sm8714-10-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8714-10-2016/}
}
TY  - JOUR
AU  - Yunied Puig
TI  - A mixing operator $T$ for which $(T, T^2)$ is not disjoint transitive
JO  - Studia Mathematica
PY  - 2017
SP  - 283
EP  - 296
VL  - 237
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm8714-10-2016/
DO  - 10.4064/sm8714-10-2016
LA  - en
ID  - 10_4064_sm8714_10_2016
ER  - 
%0 Journal Article
%A Yunied Puig
%T A mixing operator $T$ for which $(T, T^2)$ is not disjoint transitive
%J Studia Mathematica
%D 2017
%P 283-296
%V 237
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8714-10-2016/
%R 10.4064/sm8714-10-2016
%G en
%F 10_4064_sm8714_10_2016
Yunied Puig. A mixing operator $T$ for which $(T, T^2)$ is not disjoint transitive. Studia Mathematica, Tome 237 (2017) no. 3, pp. 283-296. doi: 10.4064/sm8714-10-2016

Cité par Sources :