A unified approach to approximation properties and ideals
Studia Mathematica, Tome 238 (2017) no. 3, pp. 249-269

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We use a unified argument to obtain relationships between approximation properties and ideals in spaces of some operators. We prove that a Banach space $X$ (respectively, the dual space $X^*$ of $X$) has the metric approximation property if and only if for every Banach space $Y$ and every operator $T$ from $Y$ to $X$ (respectively, $T$ from $X$ to $Y$), there exists a \begin{gather*} \varPhi\in \mathcal{HB}(\mathcal{F}(X)T, \, \textrm{span}(\mathcal{F}(X)T\cup\{T\}))\\ (\textrm{respectively,} \ \varPhi\in \mathcal{HB}(T\mathcal{F}(X), \, \textrm{span} (T\mathcal{F}(X)\cup\{T\}))) \end{gather*} such that $$ \varPhi(x^{*}\otimes y)(R)=x^{*}(Ry) \ (\textrm{respectively,} \ \varPhi(x^{**}\otimes y^{*})(R)=x^{**}(R^{\rm a}y^*)) $$ for every $x^{*}\in X^{*}$ and $y \in Y$ (respectively, $x^{**}\in X^{**}$ and $y^* \in Y^*$), and every $R \in \textrm{span} (\mathcal{F}(X)T\cup\{T\})$ (respectively, $R \in \textrm{span}(T\mathcal{F}(X)\cup\{T\}$)).
DOI : 10.4064/sm8709-1-2017
Keywords: unified argument obtain relationships between approximation properties ideals spaces operators prove banach space respectively dual space * has metric approximation property only every banach space every operator respectively there exists begin gather* varphi mathcal mathcal textrm span mathcal cup textrm respectively varphi mathcal mathcal textrm span mathcal cup end gather* varphi * otimes * textrm respectively varphi ** otimes * ** * every * * respectively ** ** * * every textrm span mathcal cup respectively textrm span mathcal cup

Ju Myung Kim 1 ; Keun Young Lee 2

1 Department of Mathematical Sciences Seoul National University Seoul, 151-747, Korea
2 Department of Mathematics Sejong University Seoul, 143-747, Korea
@article{10_4064_sm8709_1_2017,
     author = {Ju Myung Kim and Keun Young Lee},
     title = {A unified approach to approximation properties and ideals},
     journal = {Studia Mathematica},
     pages = {249--269},
     publisher = {mathdoc},
     volume = {238},
     number = {3},
     year = {2017},
     doi = {10.4064/sm8709-1-2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8709-1-2017/}
}
TY  - JOUR
AU  - Ju Myung Kim
AU  - Keun Young Lee
TI  - A unified approach to approximation properties and ideals
JO  - Studia Mathematica
PY  - 2017
SP  - 249
EP  - 269
VL  - 238
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm8709-1-2017/
DO  - 10.4064/sm8709-1-2017
LA  - en
ID  - 10_4064_sm8709_1_2017
ER  - 
%0 Journal Article
%A Ju Myung Kim
%A Keun Young Lee
%T A unified approach to approximation properties and ideals
%J Studia Mathematica
%D 2017
%P 249-269
%V 238
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8709-1-2017/
%R 10.4064/sm8709-1-2017
%G en
%F 10_4064_sm8709_1_2017
Ju Myung Kim; Keun Young Lee. A unified approach to approximation properties and ideals. Studia Mathematica, Tome 238 (2017) no. 3, pp. 249-269. doi: 10.4064/sm8709-1-2017

Cité par Sources :