1Department of Mathematical Sciences Seoul National University Seoul, 151-747, Korea 2Department of Mathematics Sejong University Seoul, 143-747, Korea
Studia Mathematica, Tome 238 (2017) no. 3, pp. 249-269
We use a unified argument to
obtain relationships
between approximation properties and
ideals in spaces of some operators.
We prove that
a Banach space $X$ (respectively, the dual space $X^*$ of $X$)
has the metric approximation property
if and only if
for every Banach space $Y$
and every operator $T$ from $Y$ to $X$ (respectively, $T$ from $X$ to $Y$),
there exists a
\begin{gather*}
\varPhi\in \mathcal{HB}(\mathcal{F}(X)T, \, \textrm{span}(\mathcal{F}(X)T\cup\{T\}))\\
(\textrm{respectively,} \ \varPhi\in \mathcal{HB}(T\mathcal{F}(X), \, \textrm{span} (T\mathcal{F}(X)\cup\{T\})))
\end{gather*}
such that
$$ \varPhi(x^{*}\otimes y)(R)=x^{*}(Ry) \
(\textrm{respectively,} \ \varPhi(x^{**}\otimes y^{*})(R)=x^{**}(R^{\rm a}y^*))
$$
for every $x^{*}\in X^{*}$ and $y \in Y$ (respectively,
$x^{**}\in X^{**}$ and $y^* \in Y^*$),
and every $R \in \textrm{span} (\mathcal{F}(X)T\cup\{T\})$
(respectively, $R \in \textrm{span}(T\mathcal{F}(X)\cup\{T\}$)).
Keywords:
unified argument obtain relationships between approximation properties ideals spaces operators prove banach space respectively dual space * has metric approximation property only every banach space every operator respectively there exists begin gather* varphi mathcal mathcal textrm span mathcal cup textrm respectively varphi mathcal mathcal textrm span mathcal cup end gather* varphi * otimes * textrm respectively varphi ** otimes * ** * every * * respectively ** ** * * every textrm span mathcal cup respectively textrm span mathcal cup
Affiliations des auteurs :
Ju Myung Kim 
1
;
Keun Young Lee 
2
1
Department of Mathematical Sciences Seoul National University Seoul, 151-747, Korea
2
Department of Mathematics Sejong University Seoul, 143-747, Korea
@article{10_4064_sm8709_1_2017,
author = {Ju Myung Kim and Keun Young Lee},
title = {A unified approach to approximation properties and ideals},
journal = {Studia Mathematica},
pages = {249--269},
year = {2017},
volume = {238},
number = {3},
doi = {10.4064/sm8709-1-2017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8709-1-2017/}
}
TY - JOUR
AU - Ju Myung Kim
AU - Keun Young Lee
TI - A unified approach to approximation properties and ideals
JO - Studia Mathematica
PY - 2017
SP - 249
EP - 269
VL - 238
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm8709-1-2017/
DO - 10.4064/sm8709-1-2017
LA - en
ID - 10_4064_sm8709_1_2017
ER -
%0 Journal Article
%A Ju Myung Kim
%A Keun Young Lee
%T A unified approach to approximation properties and ideals
%J Studia Mathematica
%D 2017
%P 249-269
%V 238
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8709-1-2017/
%R 10.4064/sm8709-1-2017
%G en
%F 10_4064_sm8709_1_2017
Ju Myung Kim; Keun Young Lee. A unified approach to approximation properties and ideals. Studia Mathematica, Tome 238 (2017) no. 3, pp. 249-269. doi: 10.4064/sm8709-1-2017