Multiplicative maps into the spectrum
Studia Mathematica, Tome 239 (2017) no. 1, pp. 55-66
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider the converse of a famous result of W. Żelazko et al. which characterizes multiplicative functionals amongst the dual space members of a complex unital Banach algebra $A$. Specifically, we investigate when a continuous multiplicative map $\phi :A\rightarrow \mathbb C$, with values $\phi (x)$ belonging to the spectrum of $x$, is automatically linear. Our main result states that if $A$ is a $C^\star $-algebra, then $\phi $ always generates a corresponding character $\psi _\phi $ of $A$. It is then shown that $\phi $ shares many linear properties with its induced character. Moreover, if $A$ is a von Neumann algebra, then it turns out that $\phi $ itself is linear, and that it corresponds to its induced character.
Keywords:
consider converse famous result elazko which characterizes multiplicative functionals amongst dual space members complex unital banach algebra specifically investigate continuous multiplicative map phi rightarrow mathbb values phi belonging spectrum automatically linear main result states star algebra phi always generates corresponding character psi phi shown phi shares many linear properties its induced character moreover von neumann algebra turns out phi itself linear corresponds its induced character
Affiliations des auteurs :
Cheick Touré 1 ; Francois Schulz 2 ; Rudi Brits 1
@article{10_4064_sm8705_1_2017,
author = {Cheick Tour\'e and Francois Schulz and Rudi Brits},
title = {Multiplicative maps into the spectrum},
journal = {Studia Mathematica},
pages = {55--66},
publisher = {mathdoc},
volume = {239},
number = {1},
year = {2017},
doi = {10.4064/sm8705-1-2017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8705-1-2017/}
}
TY - JOUR AU - Cheick Touré AU - Francois Schulz AU - Rudi Brits TI - Multiplicative maps into the spectrum JO - Studia Mathematica PY - 2017 SP - 55 EP - 66 VL - 239 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm8705-1-2017/ DO - 10.4064/sm8705-1-2017 LA - en ID - 10_4064_sm8705_1_2017 ER -
Cheick Touré; Francois Schulz; Rudi Brits. Multiplicative maps into the spectrum. Studia Mathematica, Tome 239 (2017) no. 1, pp. 55-66. doi: 10.4064/sm8705-1-2017
Cité par Sources :