Multiplicative maps into the spectrum
Studia Mathematica, Tome 239 (2017) no. 1, pp. 55-66

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider the converse of a famous result of W. Żelazko et al. which characterizes multiplicative functionals amongst the dual space members of a complex unital Banach algebra $A$. Specifically, we investigate when a continuous multiplicative map $\phi :A\rightarrow \mathbb C$, with values $\phi (x)$ belonging to the spectrum of $x$, is automatically linear. Our main result states that if $A$ is a $C^\star $-algebra, then $\phi $ always generates a corresponding character $\psi _\phi $ of $A$. It is then shown that $\phi $ shares many linear properties with its induced character. Moreover, if $A$ is a von Neumann algebra, then it turns out that $\phi $ itself is linear, and that it corresponds to its induced character.
DOI : 10.4064/sm8705-1-2017
Keywords: consider converse famous result elazko which characterizes multiplicative functionals amongst dual space members complex unital banach algebra specifically investigate continuous multiplicative map phi rightarrow mathbb values phi belonging spectrum automatically linear main result states star algebra phi always generates corresponding character psi phi shown phi shares many linear properties its induced character moreover von neumann algebra turns out phi itself linear corresponds its induced character

Cheick Touré 1 ; Francois Schulz 2 ; Rudi Brits 1

1 Department of Mathematics University of Johannesburg Johannesburg, South Africa
2 Department of Mathematics University of Johannesburg South Africa
@article{10_4064_sm8705_1_2017,
     author = {Cheick Tour\'e and Francois Schulz and Rudi Brits},
     title = {Multiplicative maps into the spectrum},
     journal = {Studia Mathematica},
     pages = {55--66},
     publisher = {mathdoc},
     volume = {239},
     number = {1},
     year = {2017},
     doi = {10.4064/sm8705-1-2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8705-1-2017/}
}
TY  - JOUR
AU  - Cheick Touré
AU  - Francois Schulz
AU  - Rudi Brits
TI  - Multiplicative maps into the spectrum
JO  - Studia Mathematica
PY  - 2017
SP  - 55
EP  - 66
VL  - 239
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm8705-1-2017/
DO  - 10.4064/sm8705-1-2017
LA  - en
ID  - 10_4064_sm8705_1_2017
ER  - 
%0 Journal Article
%A Cheick Touré
%A Francois Schulz
%A Rudi Brits
%T Multiplicative maps into the spectrum
%J Studia Mathematica
%D 2017
%P 55-66
%V 239
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8705-1-2017/
%R 10.4064/sm8705-1-2017
%G en
%F 10_4064_sm8705_1_2017
Cheick Touré; Francois Schulz; Rudi Brits. Multiplicative maps into the spectrum. Studia Mathematica, Tome 239 (2017) no. 1, pp. 55-66. doi: 10.4064/sm8705-1-2017

Cité par Sources :