Unitary subgroups and orbits of compact self-adjoint operators
Studia Mathematica, Tome 238 (2017) no. 2, pp. 155-176
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\mathcal {H}$ be a separable Hilbert space, and let $\mathcal {D}(\mathcal {B}(\mathcal {H})^{ah})$ be the anti-Hermitian bounded diagonal operators in some fixed orthonormal basis and $\mathcal {K}(\mathcal {H})$ the compact operators. We study the group of unitary operators $$ {\mathcal {U}}_{k,d}=\{u\in \mathcal {U}(\mathcal {H}): \exists D\in \mathcal {D}(\mathcal {B}(\mathcal {H})^{ah}),\, u-e^D \in \mathcal {K}(\mathcal {H})\} $$ in order to obtain a concrete description of short curves in unitary Fredholm orbits $\mathcal {O}_b=\{ e^K b e^{-K}:K\in \mathcal {K}(\mathcal {H})^{ah}\}$ of a compact self-adjoint operator $b$ with spectral multiplicity one. We consider the rectifiable distance on $\mathcal {O}_b$ defined as the infimum of curve lengths measured with the Finsler metric defined by means of the quotient space $\mathcal {K}(\mathcal {H})^{ah}/\mathcal {D}(\mathcal {K}(\mathcal {H})^{ah})$. Then for every $c\in \mathcal {O}_b$ and $x\in T_c(\mathcal {O}_b) $ there exists a minimal lifting $Z_0\in \mathcal {B}(\mathcal {H})^{ah}$ (in the quotient norm, not necessarily compact) such that $\gamma (t)=e^{t Z_0} c e^{-t Z_0}$ is a short curve on $\mathcal {O}_b$ in a certain interval.
Keywords:
mathcal separable hilbert space mathcal mathcal mathcal anti hermitian bounded diagonal operators fixed orthonormal basis mathcal mathcal compact operators study group unitary operators mathcal mathcal mathcal exists mathcal mathcal mathcal u e mathcal mathcal order obtain concrete description short curves unitary fredholm orbits mathcal e k mathcal mathcal compact self adjoint operator spectral multiplicity consider rectifiable distance mathcal defined infimum curve lengths measured finsler metric defined means quotient space mathcal mathcal mathcal mathcal mathcal every mathcal mathcal there exists minimal lifting mathcal mathcal quotient norm necessarily compact gamma t short curve mathcal certain interval
Affiliations des auteurs :
Tamara Bottazzi 1 ; Alejandro Varela 2
@article{10_4064_sm8690_12_2016,
author = {Tamara Bottazzi and Alejandro Varela},
title = {Unitary subgroups and orbits of compact self-adjoint operators},
journal = {Studia Mathematica},
pages = {155--176},
publisher = {mathdoc},
volume = {238},
number = {2},
year = {2017},
doi = {10.4064/sm8690-12-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8690-12-2016/}
}
TY - JOUR AU - Tamara Bottazzi AU - Alejandro Varela TI - Unitary subgroups and orbits of compact self-adjoint operators JO - Studia Mathematica PY - 2017 SP - 155 EP - 176 VL - 238 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm8690-12-2016/ DO - 10.4064/sm8690-12-2016 LA - en ID - 10_4064_sm8690_12_2016 ER -
%0 Journal Article %A Tamara Bottazzi %A Alejandro Varela %T Unitary subgroups and orbits of compact self-adjoint operators %J Studia Mathematica %D 2017 %P 155-176 %V 238 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm8690-12-2016/ %R 10.4064/sm8690-12-2016 %G en %F 10_4064_sm8690_12_2016
Tamara Bottazzi; Alejandro Varela. Unitary subgroups and orbits of compact self-adjoint operators. Studia Mathematica, Tome 238 (2017) no. 2, pp. 155-176. doi: 10.4064/sm8690-12-2016
Cité par Sources :