On Möbius orthogonality for subshifts of finite type with positive topological entropy
Studia Mathematica, Tome 237 (2017) no. 3, pp. 277-282
We prove that Möbius orthogonality does not hold for subshifts of finite type with positive topological entropy. This, in particular, shows that all $C^{1+ \alpha }$ surface diffeomorphisms with positive entropy correlate with the Möbius function.
Keywords:
prove bius orthogonality does subshifts finite type positive topological entropy particular shows alpha surface diffeomorphisms positive entropy correlate bius function
Affiliations des auteurs :
D. Karagulyan  1
@article{10_4064_sm8661_10_2016,
author = {D. Karagulyan},
title = {On {M\"obius} orthogonality for subshifts of finite type with positive topological entropy},
journal = {Studia Mathematica},
pages = {277--282},
year = {2017},
volume = {237},
number = {3},
doi = {10.4064/sm8661-10-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8661-10-2016/}
}
TY - JOUR AU - D. Karagulyan TI - On Möbius orthogonality for subshifts of finite type with positive topological entropy JO - Studia Mathematica PY - 2017 SP - 277 EP - 282 VL - 237 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm8661-10-2016/ DO - 10.4064/sm8661-10-2016 LA - en ID - 10_4064_sm8661_10_2016 ER -
D. Karagulyan. On Möbius orthogonality for subshifts of finite type with positive topological entropy. Studia Mathematica, Tome 237 (2017) no. 3, pp. 277-282. doi: 10.4064/sm8661-10-2016
Cité par Sources :