On Möbius orthogonality for subshifts of finite type with positive topological entropy
Studia Mathematica, Tome 237 (2017) no. 3, pp. 277-282
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove that Möbius orthogonality does not hold for subshifts of finite type with positive topological entropy. This, in particular, shows that all $C^{1+ \alpha }$ surface diffeomorphisms with positive entropy correlate with the Möbius function.
Keywords:
prove bius orthogonality does subshifts finite type positive topological entropy particular shows alpha surface diffeomorphisms positive entropy correlate bius function
Affiliations des auteurs :
D. Karagulyan 1
@article{10_4064_sm8661_10_2016,
author = {D. Karagulyan},
title = {On {M\"obius} orthogonality for subshifts of finite type with positive topological entropy},
journal = {Studia Mathematica},
pages = {277--282},
year = {2017},
volume = {237},
number = {3},
doi = {10.4064/sm8661-10-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8661-10-2016/}
}
TY - JOUR AU - D. Karagulyan TI - On Möbius orthogonality for subshifts of finite type with positive topological entropy JO - Studia Mathematica PY - 2017 SP - 277 EP - 282 VL - 237 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm8661-10-2016/ DO - 10.4064/sm8661-10-2016 LA - en ID - 10_4064_sm8661_10_2016 ER -
D. Karagulyan. On Möbius orthogonality for subshifts of finite type with positive topological entropy. Studia Mathematica, Tome 237 (2017) no. 3, pp. 277-282. doi: 10.4064/sm8661-10-2016
Cité par Sources :