On Möbius orthogonality for subshifts of finite type with positive topological entropy
Studia Mathematica, Tome 237 (2017) no. 3, pp. 277-282 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We prove that Möbius orthogonality does not hold for subshifts of finite type with positive topological entropy. This, in particular, shows that all $C^{1+ \alpha }$ surface diffeomorphisms with positive entropy correlate with the Möbius function.
DOI : 10.4064/sm8661-10-2016
Keywords: prove bius orthogonality does subshifts finite type positive topological entropy particular shows alpha surface diffeomorphisms positive entropy correlate bius function

D. Karagulyan 1

1 Department of Mathematics Royal Institute of Technology S-100 44 Stockholm, Sweden
@article{10_4064_sm8661_10_2016,
     author = {D. Karagulyan},
     title = {On {M\"obius} orthogonality for subshifts of finite type with positive topological entropy},
     journal = {Studia Mathematica},
     pages = {277--282},
     year = {2017},
     volume = {237},
     number = {3},
     doi = {10.4064/sm8661-10-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8661-10-2016/}
}
TY  - JOUR
AU  - D. Karagulyan
TI  - On Möbius orthogonality for subshifts of finite type with positive topological entropy
JO  - Studia Mathematica
PY  - 2017
SP  - 277
EP  - 282
VL  - 237
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm8661-10-2016/
DO  - 10.4064/sm8661-10-2016
LA  - en
ID  - 10_4064_sm8661_10_2016
ER  - 
%0 Journal Article
%A D. Karagulyan
%T On Möbius orthogonality for subshifts of finite type with positive topological entropy
%J Studia Mathematica
%D 2017
%P 277-282
%V 237
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8661-10-2016/
%R 10.4064/sm8661-10-2016
%G en
%F 10_4064_sm8661_10_2016
D. Karagulyan. On Möbius orthogonality for subshifts of finite type with positive topological entropy. Studia Mathematica, Tome 237 (2017) no. 3, pp. 277-282. doi: 10.4064/sm8661-10-2016

Cité par Sources :