Hardy spaces associated with non-negative self-adjoint operators
Studia Mathematica, Tome 239 (2017) no. 1, pp. 17-54

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The maximal and atomic Hardy spaces $H^p$ and $H^p_A$, $0 \lt p\le 1$, are considered in the setting of a doubling metric measure space in the presence of a non-negative self-adjoint operator whose heat kernel has Gaussian localization. It is shown that $H^p=H^p_A$ with equivalent norms.
DOI : 10.4064/sm8646-12-2016
Keywords: maximal atomic hardy spaces considered setting doubling metric measure space presence non negative self adjoint operator whose heat kernel has gaussian localization shown p equivalent norms

Shai Dekel 1 ; Gerard Kerkyacharian 2 ; George Kyriazis 3 ; Pencho Petrushev 4

1 Hamanofim St. 9 Herzelia, Israel
2 LPMA, CNRS-UMR 7599, and CREST Paris, France
3 Department of Mathematics and Statistics University of Cyprus 1678 Nicosia, Cyprus
4 Department of Mathematics University of South Carolina Columbia, SC 29208, U.S.A.
@article{10_4064_sm8646_12_2016,
     author = {Shai Dekel and Gerard Kerkyacharian and George Kyriazis and Pencho Petrushev},
     title = {Hardy spaces associated with non-negative self-adjoint operators},
     journal = {Studia Mathematica},
     pages = {17--54},
     publisher = {mathdoc},
     volume = {239},
     number = {1},
     year = {2017},
     doi = {10.4064/sm8646-12-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8646-12-2016/}
}
TY  - JOUR
AU  - Shai Dekel
AU  - Gerard Kerkyacharian
AU  - George Kyriazis
AU  - Pencho Petrushev
TI  - Hardy spaces associated with non-negative self-adjoint operators
JO  - Studia Mathematica
PY  - 2017
SP  - 17
EP  - 54
VL  - 239
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm8646-12-2016/
DO  - 10.4064/sm8646-12-2016
LA  - en
ID  - 10_4064_sm8646_12_2016
ER  - 
%0 Journal Article
%A Shai Dekel
%A Gerard Kerkyacharian
%A George Kyriazis
%A Pencho Petrushev
%T Hardy spaces associated with non-negative self-adjoint operators
%J Studia Mathematica
%D 2017
%P 17-54
%V 239
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8646-12-2016/
%R 10.4064/sm8646-12-2016
%G en
%F 10_4064_sm8646_12_2016
Shai Dekel; Gerard Kerkyacharian; George Kyriazis; Pencho Petrushev. Hardy spaces associated with non-negative self-adjoint operators. Studia Mathematica, Tome 239 (2017) no. 1, pp. 17-54. doi: 10.4064/sm8646-12-2016

Cité par Sources :