Fourier algebras of hypergroups and central algebras on compact (quantum) groups
Studia Mathematica, Tome 239 (2017) no. 3, pp. 225-247
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
This paper concerns the study of regular Fourier hypergroups through multipliers of their associated Fourier algebras. We establish hypergroup analogues of well-known characterizations of group amenability, introduce a notion of weak amenability for hypergroups, and show that every discrete commutative hypergroup is weakly amenable with constant 1. Using similar techniques, we provide a sufficient condition for amenability of hypergroup Fourier algebras, which, as an immediate application, answers one direction of a conjecture of Azimifard–Samei–Spronk (2009) on the amenability of $ZL^1(G)$ for compact groups $G$. In the final section we consider Fourier algebras of hypergroups arising from compact quantum groups $\mathbb {G}$, and in particular establish a completely isometric isomorphism with the center of the quantum group algebra for compact $\mathbb {G}$ of Kac type.
Keywords:
paper concerns study regular fourier hypergroups through multipliers their associated fourier algebras establish hypergroup analogues well known characterizations group amenability introduce notion weak amenability hypergroups every discrete commutative hypergroup weakly amenable constant using similar techniques provide sufficient condition amenability hypergroup fourier algebras which immediate application answers direction conjecture azimifard samei spronk amenability compact groups final section consider fourier algebras hypergroups arising compact quantum groups mathbb particular establish completely isometric isomorphism center quantum group algebra compact mathbb kac type
Affiliations des auteurs :
Mahmood Alaghmandan 1 ; Jason Crann 1
@article{10_4064_sm8643_3_2017,
author = {Mahmood Alaghmandan and Jason Crann},
title = {Fourier algebras of hypergroups and central algebras on compact (quantum) groups},
journal = {Studia Mathematica},
pages = {225--247},
publisher = {mathdoc},
volume = {239},
number = {3},
year = {2017},
doi = {10.4064/sm8643-3-2017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8643-3-2017/}
}
TY - JOUR AU - Mahmood Alaghmandan AU - Jason Crann TI - Fourier algebras of hypergroups and central algebras on compact (quantum) groups JO - Studia Mathematica PY - 2017 SP - 225 EP - 247 VL - 239 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm8643-3-2017/ DO - 10.4064/sm8643-3-2017 LA - en ID - 10_4064_sm8643_3_2017 ER -
%0 Journal Article %A Mahmood Alaghmandan %A Jason Crann %T Fourier algebras of hypergroups and central algebras on compact (quantum) groups %J Studia Mathematica %D 2017 %P 225-247 %V 239 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm8643-3-2017/ %R 10.4064/sm8643-3-2017 %G en %F 10_4064_sm8643_3_2017
Mahmood Alaghmandan; Jason Crann. Fourier algebras of hypergroups and central algebras on compact (quantum) groups. Studia Mathematica, Tome 239 (2017) no. 3, pp. 225-247. doi: 10.4064/sm8643-3-2017
Cité par Sources :