Generalized Daugavet equations, affine operators and unique best approximation
Studia Mathematica, Tome 238 (2017) no. 3, pp. 235-247

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We introduce and investigate the notion of generalized Daugavet equation $\| A_1+\cdots +A_n\| =\| A_1\| +\cdots +\| A_n\| $ for affine operators $A_1,\ldots ,A_n$ on a reflexive Banach space into another Banach space. This extends the well-known Daugavet equation $\| T+I\| =\| T\| +1$, where $I$ denotes the identity operator. A new characterization of the Daugavet equation in terms of extreme points is given. We also present a result concerning uniqueness of best approximation.
DOI : 10.4064/sm8635-12-2016
Keywords: introduce investigate notion generalized daugavet equation cdots cdots affine operators ldots reflexive banach space another banach space extends well known daugavet equation where denotes identity operator characterization daugavet equation terms extreme points given present result concerning uniqueness best approximation

Paweł Wójcik 1

1 Institute of Mathematics Pedagogical University of Cracow Podchorążych 2 30-084 Kraków, Poland
@article{10_4064_sm8635_12_2016,
     author = {Pawe{\l} W\'ojcik},
     title = {Generalized {Daugavet} equations, affine operators and unique best approximation},
     journal = {Studia Mathematica},
     pages = {235--247},
     publisher = {mathdoc},
     volume = {238},
     number = {3},
     year = {2017},
     doi = {10.4064/sm8635-12-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8635-12-2016/}
}
TY  - JOUR
AU  - Paweł Wójcik
TI  - Generalized Daugavet equations, affine operators and unique best approximation
JO  - Studia Mathematica
PY  - 2017
SP  - 235
EP  - 247
VL  - 238
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm8635-12-2016/
DO  - 10.4064/sm8635-12-2016
LA  - en
ID  - 10_4064_sm8635_12_2016
ER  - 
%0 Journal Article
%A Paweł Wójcik
%T Generalized Daugavet equations, affine operators and unique best approximation
%J Studia Mathematica
%D 2017
%P 235-247
%V 238
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8635-12-2016/
%R 10.4064/sm8635-12-2016
%G en
%F 10_4064_sm8635_12_2016
Paweł Wójcik. Generalized Daugavet equations, affine operators and unique best approximation. Studia Mathematica, Tome 238 (2017) no. 3, pp. 235-247. doi: 10.4064/sm8635-12-2016

Cité par Sources :