On totally smooth subspaces of Banach spaces: the Vlasov theorem revisited
Studia Mathematica, Tome 238 (2017) no. 1, pp. 91-99
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $X$ be a Banach space and let $Y$ be a closed subspace of $X$. We establish new geometric characterizations for $Y$ to be totally smooth in $X$, meaning that every closed subspace of $Y$ has Phelps’ property $U$ in $X$. In particular, this gives a new self-contained proof for a recent theorem of Liao and Wong, and an improved proof for a theorem of Vlasov.
Keywords:
banach space closed subspace establish geometric characterizations totally smooth meaning every closed subspace has phelps property particular gives self contained proof recent theorem liao wong improved proof theorem vlasov
Affiliations des auteurs :
Eve Oja 1 ; Märt Põldvere 2 ; Tauri Viil 2
@article{10_4064_sm8623_12_2016,
author = {Eve Oja and M\"art P\~oldvere and Tauri Viil},
title = {On totally smooth subspaces of {Banach} spaces: the {Vlasov} theorem revisited},
journal = {Studia Mathematica},
pages = {91--99},
year = {2017},
volume = {238},
number = {1},
doi = {10.4064/sm8623-12-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8623-12-2016/}
}
TY - JOUR AU - Eve Oja AU - Märt Põldvere AU - Tauri Viil TI - On totally smooth subspaces of Banach spaces: the Vlasov theorem revisited JO - Studia Mathematica PY - 2017 SP - 91 EP - 99 VL - 238 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm8623-12-2016/ DO - 10.4064/sm8623-12-2016 LA - en ID - 10_4064_sm8623_12_2016 ER -
%0 Journal Article %A Eve Oja %A Märt Põldvere %A Tauri Viil %T On totally smooth subspaces of Banach spaces: the Vlasov theorem revisited %J Studia Mathematica %D 2017 %P 91-99 %V 238 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/sm8623-12-2016/ %R 10.4064/sm8623-12-2016 %G en %F 10_4064_sm8623_12_2016
Eve Oja; Märt Põldvere; Tauri Viil. On totally smooth subspaces of Banach spaces: the Vlasov theorem revisited. Studia Mathematica, Tome 238 (2017) no. 1, pp. 91-99. doi: 10.4064/sm8623-12-2016
Cité par Sources :