Dyadic weights on $\mathbb {R}^n$ and reverse Hölder inequalities
Studia Mathematica, Tome 234 (2016) no. 3, pp. 281-290

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that for any weight $\phi $ defined on $[0,1]^n$ that satisfies a reverse Hölder inequality with exponent $p \gt 1$ and constant $c\ge 1$ on all dyadic subcubes of $[0,1]^n$, its non-increasing rearrangement $\phi ^\ast $ satisfies a reverse Hölder inequality with the same exponent and constant not more than $2^nc-2^n+1$ on all subintervals of the form $[0,t]$, $0 \lt t\le 1$. As a consequence, there is an interval $[p,p_0(p,c))=I_{p,c}$ such that $\phi \in L^q$ for any $q\in I_{p,c}$.
DOI : 10.4064/sm8621-6-2016
Keywords: prove weight phi defined satisfies reverse lder inequality exponent constant dyadic subcubes its non increasing rearrangement phi ast satisfies reverse lder inequality exponent constant nc subintervals form consequence there interval phi

Eleftherios N. Nikolidakis 1 ; Antonios D. Melas 1

1 Department of Mathematics National and Kapodistrian University of Athens Zografou, GR-15784, Athens, Greece
@article{10_4064_sm8621_6_2016,
     author = {Eleftherios N. Nikolidakis and Antonios D. Melas},
     title = {Dyadic weights on $\mathbb {R}^n$ and reverse {H\"older} inequalities},
     journal = {Studia Mathematica},
     pages = {281--290},
     publisher = {mathdoc},
     volume = {234},
     number = {3},
     year = {2016},
     doi = {10.4064/sm8621-6-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8621-6-2016/}
}
TY  - JOUR
AU  - Eleftherios N. Nikolidakis
AU  - Antonios D. Melas
TI  - Dyadic weights on $\mathbb {R}^n$ and reverse Hölder inequalities
JO  - Studia Mathematica
PY  - 2016
SP  - 281
EP  - 290
VL  - 234
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm8621-6-2016/
DO  - 10.4064/sm8621-6-2016
LA  - en
ID  - 10_4064_sm8621_6_2016
ER  - 
%0 Journal Article
%A Eleftherios N. Nikolidakis
%A Antonios D. Melas
%T Dyadic weights on $\mathbb {R}^n$ and reverse Hölder inequalities
%J Studia Mathematica
%D 2016
%P 281-290
%V 234
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8621-6-2016/
%R 10.4064/sm8621-6-2016
%G en
%F 10_4064_sm8621_6_2016
Eleftherios N. Nikolidakis; Antonios D. Melas. Dyadic weights on $\mathbb {R}^n$ and reverse Hölder inequalities. Studia Mathematica, Tome 234 (2016) no. 3, pp. 281-290. doi: 10.4064/sm8621-6-2016

Cité par Sources :