Inverse problems for boundary triples with applications
Studia Mathematica, Tome 237 (2017) no. 3, pp. 241-275
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
This paper discusses the inverse problem of how much information on an operator can be determined/detected from ‘measurements on the boundary’. Our focus is on non-selfadjoint operators and their detectable subspaces (these determine the part of the operator ‘visible’ from ‘boundary measurements’). We show results in an abstract setting, where we consider the relation between the $M$-function (the abstract Dirichlet to Neumann map or the transfer matrix in system theory) and the resolvent bordered by projections onto the detectable subspaces. More specifically, we investigate questions of unique determination, reconstruction, analytic continuation and jumps across the essential spectrum. The abstract results are illustrated by examples of Schrödinger operators, matrix-differential operators and, mostly, by multiplication operators perturbed by integral operators (the Friedrichs model), where we use a result of Widom to show that the detectable subspace can be characterized in terms of an eigenspace of a Hankel-like operator.
Keywords:
paper discusses inverse problem much information operator determined detected measurements boundary focus non selfadjoint operators their detectable subspaces these determine part operator visible boundary measurements results abstract setting where consider relation between m function abstract dirichlet neumann map transfer matrix system theory resolvent bordered projections detectable subspaces specifically investigate questions unique determination reconstruction analytic continuation jumps across essential spectrum abstract results illustrated examples schr dinger operators matrix differential operators mostly multiplication operators perturbed integral operators friedrichs model where result widom detectable subspace characterized terms eigenspace hankel like operator
Affiliations des auteurs :
B. M. Brown 1 ; M. Marletta 2 ; S. Naboko 3 ; I. Wood 4
@article{10_4064_sm8613_11_2016,
author = {B. M. Brown and M. Marletta and S. Naboko and I. Wood},
title = {Inverse problems for boundary triples with applications},
journal = {Studia Mathematica},
pages = {241--275},
year = {2017},
volume = {237},
number = {3},
doi = {10.4064/sm8613-11-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8613-11-2016/}
}
TY - JOUR AU - B. M. Brown AU - M. Marletta AU - S. Naboko AU - I. Wood TI - Inverse problems for boundary triples with applications JO - Studia Mathematica PY - 2017 SP - 241 EP - 275 VL - 237 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm8613-11-2016/ DO - 10.4064/sm8613-11-2016 LA - en ID - 10_4064_sm8613_11_2016 ER -
%0 Journal Article %A B. M. Brown %A M. Marletta %A S. Naboko %A I. Wood %T Inverse problems for boundary triples with applications %J Studia Mathematica %D 2017 %P 241-275 %V 237 %N 3 %U http://geodesic.mathdoc.fr/articles/10.4064/sm8613-11-2016/ %R 10.4064/sm8613-11-2016 %G en %F 10_4064_sm8613_11_2016
B. M. Brown; M. Marletta; S. Naboko; I. Wood. Inverse problems for boundary triples with applications. Studia Mathematica, Tome 237 (2017) no. 3, pp. 241-275. doi: 10.4064/sm8613-11-2016
Cité par Sources :