1Department of Mathematics Hebei Normal University Shijiazhuang, Hebei, 050016, China 2Department of Mathematics The University of Alabama Tuscaloosa, AL 35487, U.S.A.
Studia Mathematica, Tome 236 (2017) no. 2, pp. 193-200
We prove that the quantity that appears in a recent similarity characterization for Cowen–Douglas operators is the trace of the curvature of the eigenvector bundle. This gives the first geometric interpretation of the similarity of operators.
1
Department of Mathematics Hebei Normal University Shijiazhuang, Hebei, 050016, China
2
Department of Mathematics The University of Alabama Tuscaloosa, AL 35487, U.S.A.
@article{10_4064_sm8588_9_2016,
author = {Yingli Hou and Kui Ji and Hyun-Kyoung Kwon},
title = {The trace of the curvature determines similarity},
journal = {Studia Mathematica},
pages = {193--200},
year = {2017},
volume = {236},
number = {2},
doi = {10.4064/sm8588-9-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8588-9-2016/}
}
TY - JOUR
AU - Yingli Hou
AU - Kui Ji
AU - Hyun-Kyoung Kwon
TI - The trace of the curvature determines similarity
JO - Studia Mathematica
PY - 2017
SP - 193
EP - 200
VL - 236
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm8588-9-2016/
DO - 10.4064/sm8588-9-2016
LA - en
ID - 10_4064_sm8588_9_2016
ER -
%0 Journal Article
%A Yingli Hou
%A Kui Ji
%A Hyun-Kyoung Kwon
%T The trace of the curvature determines similarity
%J Studia Mathematica
%D 2017
%P 193-200
%V 236
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8588-9-2016/
%R 10.4064/sm8588-9-2016
%G en
%F 10_4064_sm8588_9_2016
Yingli Hou; Kui Ji; Hyun-Kyoung Kwon. The trace of the curvature determines similarity. Studia Mathematica, Tome 236 (2017) no. 2, pp. 193-200. doi: 10.4064/sm8588-9-2016