The trace of the curvature determines similarity
Studia Mathematica, Tome 236 (2017) no. 2, pp. 193-200
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove that the quantity that appears in a recent similarity characterization for Cowen–Douglas operators is the trace of the curvature of the eigenvector bundle. This gives the first geometric interpretation of the similarity of operators.
Keywords:
prove quantity appears recent similarity characterization cowen douglas operators trace curvature eigenvector bundle gives first geometric interpretation similarity operators
Affiliations des auteurs :
Yingli Hou 1 ; Kui Ji 1 ; Hyun-Kyoung Kwon 2
@article{10_4064_sm8588_9_2016,
author = {Yingli Hou and Kui Ji and Hyun-Kyoung Kwon},
title = {The trace of the curvature determines similarity},
journal = {Studia Mathematica},
pages = {193--200},
year = {2017},
volume = {236},
number = {2},
doi = {10.4064/sm8588-9-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8588-9-2016/}
}
TY - JOUR AU - Yingli Hou AU - Kui Ji AU - Hyun-Kyoung Kwon TI - The trace of the curvature determines similarity JO - Studia Mathematica PY - 2017 SP - 193 EP - 200 VL - 236 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm8588-9-2016/ DO - 10.4064/sm8588-9-2016 LA - en ID - 10_4064_sm8588_9_2016 ER -
Yingli Hou; Kui Ji; Hyun-Kyoung Kwon. The trace of the curvature determines similarity. Studia Mathematica, Tome 236 (2017) no. 2, pp. 193-200. doi: 10.4064/sm8588-9-2016
Cité par Sources :